ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Well-posedness of the Schrodinger-Korteweg-de Vries system

262   0   0.0 ( 0 )
 نشر من قبل Yuzhao Wang
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove that the Cauchy problem for the Schrodinger-Korteweg-de Vries system is locally well-posed for the initial data belonging to the Sovolev spaces $L^2(R)times H^{-{3/4}}(R)$. The new ingredient is that we use the $bar{F}^s$ type space, introduced by the first author in cite{G}, to deal with the KdV part of the system and the coupling terms. In order to overcome the difficulty caused by the lack of scaling invariance, we prove uniform estimates for the multiplier. This result improves the previous one by Corcho and Linares.



قيم البحث

اقرأ أيضاً

108 - Luc Molinet 2021
In this paper, KdV-type equations with time- and space-dependent coefficients are considered. Assuming that the dispersion coefficient in front of $u_{xxx}$ is positive and uniformly bounded away from the origin and that a primitive function of the r atio between the anti-dissipation and the dispersion coefficients is bounded from below, we prove the existence and uniqueness of a solution $u$ such that $h u$ belongs to a classical Sobolev space, where $h$ is a function related to this ratio. The LWP in $H^s(mathbb{R})$, $s>1/2$, in the classical (Hadamard) sense is also proven under an assumption on the integrability of this ratio. Our approach combines a change of unknown with dispersive estimates. Note that previous results were restricted to $H^s(mathbb{R})$, $s>3/2$, and only used the dispersion to compensate the anti-dissipation and not to lower the Sobolev index required for well-posedness.
212 - Zihua Guo , Baoxiang Wang 2008
Considering the Cauchy problem for the Korteweg-de Vries-Burgers equation begin{eqnarray*} u_t+u_{xxx}+epsilon |partial_x|^{2alpha}u+(u^2)_x=0, u(0)=phi, end{eqnarray*} where $0<epsilon,alphaleq 1$ and $u$ is a real-valued function, we show that it is globally well-posed in $H^s (s>s_alpha)$, and uniformly globally well-posed in $H^s (s>-3/4)$ for all $epsilon in (0,1)$. Moreover, we prove that for any $T>0$, its solution converges in $C([0,T]; H^s)$ to that of the KdV equation if $epsilon$ tends to 0.
128 - Zihua Guo 2009
We prove that the Korteweg-de Vries initial-value problem is globally well-posed in $H^{-3/4}(R)$ and the modified Korteweg-de Vries initial-value problem is globally well-posed in $H^{1/4}(R)$. The new ingredient is that we use directly the contract ion principle to prove local well-posedness for KdV equation at $s=-3/4$ by constructing some special resolution spaces in order to avoid some logarithmic divergence from the high-high interactions. Our local solution has almost the same properties as those for $H^s (s>-3/4)$ solution which enable us to apply the I-method to extend it to a global solution.
This work is concerned with special regularity properties of solutions to the $k$-generalized Korteweg-de Vries equation. In cite{IsazaLinaresPonce} it was established that if the initial datun $u_0in H^l((b,infty))$ for some $linmathbb Z^+$ and $bin mathbb R$, then the corresponding solution $u(cdot,t)$ belongs to $H^l((beta,infty))$ for any $beta in mathbb R$ and any $tin (0,T)$. Our goal here is to extend this result to the case where $,lin mathbb R^+$.
In this paper we consider two numerical scheme based on trapezoidal rule in time for the linearized KdV equation in one space dimension. The goal is to derive some suitable artificial boundary conditions for these two full discretization using Z-tran sformation. We give some numerical benchmark examples from the literature to illustrate our findings.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا