ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-locality of non-Abelian anyons

190   0   0.0 ( 0 )
 نشر من قبل Gavin K. Brennen
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Topological systems, such as fractional quantum Hall liquids, promise to successfully combat environmental decoherence while performing quantum computation. These highly correlated systems can support non-Abelian anyonic quasiparticles that can encode exotic entangled states. To reveal the non-local character of these encoded states we demonstrate the violation of suitable Bell inequalities. We provide an explicit recipe for the preparation, manipulation and measurement of the desired correlations for a large class of topological models. This proposal gives an operational measure of non-locality for anyonic states and it opens up the possibility to violate the Bell inequalities in quantum Hall liquids or spin lattices.



قيم البحث

اقرأ أيضاً

We consider a class of decoding algorithms that are applicable to error correction for both Abelian and non-Abelian anyons. This class includes multiple algorithms that have recently attracted attention, including the Bravyi-Haah RG decoder. They are applied to both the problem of single shot error correction (with perfect syndrome measurements) and that of active error correction (with noisy syndrome measurements). For Abelian models we provide a threshold proof in both cases, showing that there is a finite noise threshold under which errors can be arbitrarily suppressed when any decoder in this class is used. For non-Abelian models such a proof is found for the single shot case. The means by which decoding may be performed for active error correction of non-Abelian anyons is studied in detail. Differences with the Abelian case are discussed.
We establish the existence of a chiral spin liquid (CSL) as the exact ground state of the Kitaev model on a decorated honeycomb lattice, which is obtained by replacing each site in the familiar honeycomb lattice with a triangle. The CSL state spontan eously breaks time reversal symmetry but preserves other symmetries. There are two topologically distinct CSLs separated by a quantum critical point. Interestingly, vortex excitations in the topologically nontrivial (Chern number $pm 1$) CSL obey non-Abelian statistics.
Anyons are particlelike excitations of strongly correlated phases of matter with fractional statistics, characterized by nontrivial changes in the wave function, generalizing Bose and Fermi statistics, when two of them are interchanged. This can be u sed to perform quantum computations [A. Yu. Kitaev, Ann. Phys. (N.Y.) 303, 2 (2003)]. We show how to simulate the creation and manipulation of Abelian and non- Abelian anyons in topological lattice models using trapped atoms in optical lattices. Our proposal, feasible with present technology, requires an ancilla particle which can undergo single-particle gates, be moved close to each constituent of the lattice and undergo a simple quantum gate, and be detected.
Bipartite entanglement entropies, calculated from the reduced density matrix of a subsystem, provide a description of the resources available within a system for performing quantum information processing. However, these quantities are not uniquely de fined on a system of non-Abelian anyons. This paper describes how reduced density matrices and bipartite entanglement entropies (such as the von Neumann and Renyi entropies) may be constructed for non-Abelian anyonic systems, in ways which reduce to the conventional definitions for systems with only local degrees of freedom.
Two parts of an entangled quantum state can have a correlation in their joint behavior under measurements that is unexplainable by shared classical information. Such correlations are called non-local and have proven to be an interesting resource for information processing. Since non-local correlations are more useful if they are stronger, it is natural to ask whether weak non-locality can be amplified. We give an affirmative answer by presenting the first protocol for distilling non-locality in the framework of generalized non-signaling theories. Our protocol works for both quantum and non-quantum correlations. This shows that in many contexts, the extent to which a single instance of a correlation can violate a CHSH inequality is not a good measure for the usefulness of non-locality. A more meaningful measure follows from our results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا