ﻻ يوجد ملخص باللغة العربية
Anyons are particlelike excitations of strongly correlated phases of matter with fractional statistics, characterized by nontrivial changes in the wave function, generalizing Bose and Fermi statistics, when two of them are interchanged. This can be used to perform quantum computations [A. Yu. Kitaev, Ann. Phys. (N.Y.) 303, 2 (2003)]. We show how to simulate the creation and manipulation of Abelian and non- Abelian anyons in topological lattice models using trapped atoms in optical lattices. Our proposal, feasible with present technology, requires an ancilla particle which can undergo single-particle gates, be moved close to each constituent of the lattice and undergo a simple quantum gate, and be detected.
We consider a class of decoding algorithms that are applicable to error correction for both Abelian and non-Abelian anyons. This class includes multiple algorithms that have recently attracted attention, including the Bravyi-Haah RG decoder. They are
Topological systems, such as fractional quantum Hall liquids, promise to successfully combat environmental decoherence while performing quantum computation. These highly correlated systems can support non-Abelian anyonic quasiparticles that can encod
In this work we present an optical lattice setup to realize a full Dirac Hamiltonian in 2+1 dimensions. We show how all possible external potentials coupled to the Dirac field can arise from perturbations of the existing couplings of the honeycomb la
In this paper, we report on the study of Abelian and non-Abelian statistics through Fabry-Perot interferometry of fractional quantum Hall (FQH) systems. Our detection of phase slips in quantum interference experiments demonstrates a powerful, new way
We explore vorton solutions in the Wittens $U(1) times U(1)$ model for cosmic strings and in a modified version $U(1) times SO(3)$ obtained by introducing a triplet of non-Abelian fields to condense inside the string. We restrict to the case in which