We describe some of the algebra underlying the decomposition of planar grid diagrams. This provides a useful toy model for an extension of Heegaard Floer homology to 3-manifolds with parametrized boundary. This paper is meant to serve as a gentle introduction to the subject, and does not itself have immediate topological applications.
We construct Heegaard Floer theory for 3-manifolds with connected boundary. The theory associates to an oriented, parametrized two-manifold a differential graded algebra. For a three-manifold with parametrized boundary, the invariant comes in two differe
We give combinatorial descriptions of the Heegaard Floer homology groups for arbitrary three-manifolds (with coefficients in Z/2). The descriptions are based on presenting the three-manifold as an integer surgery on a link in the three-sphere, and th
en using a grid diagram for the link. We also give combinatorial descriptions of the mod 2 Ozsvath-Szabo mixed invariants of closed four-manifolds, in terms of grid diagrams.
This is a survey of bordered Heegaard Floer homology, an extension of the Heegaard Floer invariant HF-hat to 3-manifolds with boundary. Emphasis is placed on how bordered Heegaard Floer homology can be used for computations.
Using the combinatorial approach to Heegaard Floer homology we obtain a relatively easy formula for computation of hat Heegaard Floer homology for the three-manifold obtained by rational surgery on a knot K inside a homology sphere Y.
We show that if K is a non-trivial knot inside a homology sphere Y, then the rank of knot Floer homology associated with K is strictly bigger than the rank of Heegaard Floer homology of Y.