ترغب بنشر مسار تعليمي؟ اضغط هنا

A note on the rank of Heegaard Floer homology

167   0   0.0 ( 0 )
 نشر من قبل Eaman Eftekhary
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English
 تأليف Eaman Eftekhary




اسأل ChatGPT حول البحث

We show that if K is a non-trivial knot inside a homology sphere Y, then the rank of knot Floer homology associated with K is strictly bigger than the rank of Heegaard Floer homology of Y.



قيم البحث

اقرأ أيضاً

149 - Eaman Eftekhary 2008
We give a precise description of splicing formulas from a previous paper in terms of knot Floer complex associated with a knot in homology sphere.
Given a double cover between 3-manifolds branched along a nullhomologous link, we establish an inequality between the dimensions of their Heegaard Floer homologies. We discuss the relationship with the L-space conjecture and give some other topologic al applications, as well as an analogous result for sutured Floer homology.
We construct Heegaard Floer theory for 3-manifolds with connected boundary. The theory associates to an oriented, parametrized two-manifold a differential graded algebra. For a three-manifold with parametrized boundary, the invariant comes in two differe
237 - Eaman Eftekhary 2008
Using the combinatorial approach to Heegaard Floer homology we obtain a relatively easy formula for computation of hat Heegaard Floer homology for the three-manifold obtained by rational surgery on a knot K inside a homology sphere Y.
We describe some of the algebra underlying the decomposition of planar grid diagrams. This provides a useful toy model for an extension of Heegaard Floer homology to 3-manifolds with parametrized boundary. This paper is meant to serve as a gentle int roduction to the subject, and does not itself have immediate topological applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا