ترغب بنشر مسار تعليمي؟ اضغط هنا

SN 2006gy: was it really extra-ordinary?

364   0   0.0 ( 0 )
 نشر من قبل Irene Agnoletto
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an optical photometric and spectroscopic study of the very luminous type IIn SN 2006gy for a time period spanning more than one year. In photometry, a broad, bright (M_R~-21.7) peak characterizes all BVRI light curves. Afterwards, a rapid luminosity fading is followed by a phase of slow luminosity decline between day ~170 and ~237. At late phases (>237 days), because of the large luminosity drop (>3 mag), only upper visibility limits are obtained in the B, R and I bands. In the near-infrared, two K-band detections on days 411 and 510 open new issues about dust formation or IR echoes scenarios. At all epochs the spectra are characterized by the absence of broad P-Cygni profiles and a multicomponent Halpha profile, which are the typical signatures of type IIn SNe. After maximum, spectroscopic and photometric similarities are found between SN 2006gy and bright, interaction-dominated SNe (e.g. SN 1997cy, SN 1999E and SN 2002ic). This suggests that ejecta-CSM interaction plays a key role in SN 2006gy about 6 to 8 months after maximum, sustaining the late-time-light curve. Alternatively, the late luminosity may be related to the radioactive decay of ~3M_sun of 56Ni. Models of the light curve in the first 170 days suggest that the progenitor was a compact star (R~6-8 10^(12)cm, M_ej~5-14M_sun), and that the SN ejecta collided with massive (6-10M_sun), opaque clumps of previously ejected material. These clumps do not completely obscure the SN photosphere, so that at its peak the luminosity is due both to the decay of 56Ni and to interaction with CSM. A supermassive star is not required to explain the observational data, nor is an extra-ordinarily large explosion energy.



قيم البحث

اقرأ أيضاً

We study the current best model (KDG) for question answering on tabular data evaluated over the WikiTableQuestions dataset. Previous ablation studies performed against this model attributed the models performance to certain aspects of its architectur e. In this paper, we find that the models performance also crucially depends on a certain pruning of the data used to train the model. Disabling the pruning step drops the accuracy of the model from 43.3% to 36.3%. The large impact on the performance of the KDG model suggests that the pruning may be a useful pre-processing step in training other semantic parsers as well.
We classify condensed matter systems in terms of the spacetime symmetries they spontaneously break. In particular, we characterize condensed matter itself as any state in a Poincare-invariant theory that spontaneously breaks Lorentz boosts while pres erving at large distances some form of spatial translations, time-translations, and possibly spatial rotations. Surprisingly, the simplest, most minimal system achieving this symmetry breaking pattern---the framid---does not seem to be realized in Nature. Instead, Nature usually adopts a more cumbersome strategy: that of introducing internal translational symmetries---and possibly rotational ones---and of spontaneously breaking them along with their space-time counterparts, while preserving unbroken diagonal subgroups. This symmetry breaking pattern describes the infrared dynamics of ordinary solids, fluids, superfluids, and---if they exist---supersolids. A third, extra-ordinary, possibility involves replacing these internal symmetries with other symmetries that do not commute with the Poincare group, for instance the galileon symmetry, supersymmetry or gauge symmetries. Among these options, we pick the systems based on the galileon symmetry, the galileids, for a more detailed study. Despite some similarity, all different patterns produce truly distinct physical systems with different observable properties. For instance, the low-energy $2to 2$ scattering amplitudes for the Goldstone excitations in the cases of framids, solids and galileids scale respectively as $E^2$, $E^4$, and $E^6$. Similarly the energy momentum tensor in the ground state is trivial for framids ($rho +p=0$), normal for solids ($rho+p>0$) and even inhomogenous for galileids.
105 - Ori D. Fox 2015
SN 2006gy was the most luminous SN ever observed at the time of its discovery and the first of the newly defined class of superluminous supernovae (SLSNe). The extraordinary energetics of SN 2006gy and all SLSNe (>10^51 erg) require either atypically large explosion energies (e.g., pair-instability explosion) or the efficient conversion of kinetic into radiative energy (e.g., shock interaction). The mass-loss characteristics can therefore offer important clues regarding the progenitor system. For the case of SN 2006gy, both a scattered and thermal light echo from circumstellar material (CSM) have been reported at later epochs (day ~800), ruling out the likelihood of a pair-instability event and leading to constraints on the characteristics of the CSM. Owing to the proximity of the SN to the bright host-galaxy nucleus, continued monitoring of the light echo has not been trivial, requiring the high resolution offered by the Hubble Space Telescope (HST) or ground-based adaptive optics (AO). Here we report detections of SN 2006gy using HST and Keck AO at ~3000 days post-explosion and consider the emission mechanism for the very late-time light curve. While the optical light curve and optical spectral energy distribution are consistent with a continued scattered-light echo, a thermal echo is insufficient to power the K-band emission by day 3000. Instead, we present evidence for late-time infrared emission from dust that is radiatively heated by CSM interaction within an extremely dense dust shell, and we consider the implications on the CSM characteristics and progenitor system.
The ionization constant of water Kw is currently determined on the proton conductivity sigma1 which is measured at frequencies lower than 10^7 Hz. Here, we develop the idea that the high frequency conductivity sigma2 (~10^11 Hz), rather than sigma1 r epresents a net proton dynamics in water, to evaluate the actual concentration c of H3O+ and OH- ions from sigma2. We find c to be not dependent on temperature to conclude that i) water electrodynamics is due to a proton exchange between H3O+ (or OH-) ions and neutral H2O molecules rather than spontaneous ionization of H2O molecules, ii) the common Kw (or pH) reflects the thermoactivation of the H3O+ and OH- ions from the potential of their interaction, iii) the lifetime of a target water molecule does not exceed parts of nanosecond.
Visual Dialog involves understanding the dialog history (what has been discussed previously) and the current question (what is asked), in addition to grounding information in the image, to generate the correct response. In this paper, we show that co -attention models which explicitly encode dialog history outperform models that dont, achieving state-of-the-art performance (72 % NDCG on val set). However, we also expose shortcomings of the crowd-sourcing dataset collection procedure by showing that history is indeed only required for a small amount of the data and that the current evaluation metric encourages generic replies. To that end, we propose a challenging subset (VisDialConv) of the VisDial val set and provide a benchmark of 63% NDCG.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا