ﻻ يوجد ملخص باللغة العربية
Visual Dialog involves understanding the dialog history (what has been discussed previously) and the current question (what is asked), in addition to grounding information in the image, to generate the correct response. In this paper, we show that co-attention models which explicitly encode dialog history outperform models that dont, achieving state-of-the-art performance (72 % NDCG on val set). However, we also expose shortcomings of the crowd-sourcing dataset collection procedure by showing that history is indeed only required for a small amount of the data and that the current evaluation metric encourages generic replies. To that end, we propose a challenging subset (VisDialConv) of the VisDial val set and provide a benchmark of 63% NDCG.
Compared with cheap addition operation, multiplication operation is of much higher computation complexity. The widely-used convolutions in deep neural networks are exactly cross-correlation to measure the similarity between input feature and convolut
We introduce the task of Visual Dialog, which requires an AI agent to hold a meaningful dialog with humans in natural, conversational language about visual content. Specifically, given an image, a dialog history, and a question about the image, the a
Face recognition capabilities have recently made extraordinary leaps. Though this progress is at least partially due to ballooning training set sizes -- huge numbers of face images downloaded and labeled for identity -- it is not clear if the formida
Can we develop visually grounded dialog agents that can efficiently adapt to new tasks without forgetting how to talk to people? Such agents could leverage a larger variety of existing data to generalize to new tasks, minimizing expensive data collec
Visual Dialog is a multimodal task of answering a sequence of questions grounded in an image, using the conversation history as context. It entails challenges in vision, language, reasoning, and grounding. However, studying these subtasks in isolatio