ترغب بنشر مسار تعليمي؟ اضغط هنا

Scaling limit for a drainage network model

403   0   0.0 ( 0 )
 نشر من قبل Luiz Renato Fontes
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the two dimensional version of a drainage network model introduced by Gangopadhyay, Roy and Sarkar, and show that the appropriately rescaled family of its paths converges in distribution to the Brownian web. We do so by verifying the convergence criteria proposed by Fontes, Isopi, Newman and Ravishankar.



قيم البحث

اقرأ أيضاً

We study K-processes, which are Markov processes in a denumerable state space, all of whose elements are stable, with the exception of a single state, starting from which the process enters finite sets of stable states with uniform distribution. We s how how these processes arise, in a particular instance, as scaling limits of the trap model in the complete graph, and subsequently derive aging results for those models in this context.
We consider gradient fields $(phi_x:xin mathbb{Z}^d)$ whose law takes the Gibbs--Boltzmann form $Z^{-1}exp{-sum_{< x,y>}V(phi_y-phi_x)}$, where the sum runs over nearest neighbors. We assume that the potential $V$ admits the representation [V(eta):=- logintvarrho({d}kappa)expbiggl[-{1/2}kappaet a^2biggr],] where $varrho$ is a positive measure with compact support in $(0,infty)$. Hence, the potential $V$ is symmetric, but nonconvex in general. While for strictly convex $V$s, the translation-invariant, ergodic gradient Gibbs measures are completely characterized by their tilt, a nonconvex potential as above may lead to several ergodic gradient Gibbs measures with zero tilt. Still, every ergodic, zero-tilt gradient Gibbs measure for the potential $V$ above scales to a Gaussian free field.
We introduce a system of coalescing random paths with radialbehavior in a subsetof the plane. We call it theDiscrete Radial Poissonian Web. We show that underdiffusive scaling this family converges in distribution toa mapping of a restrictionof the Brownian Web.
We introduce trap models on a finite volume $k$-level tree as a class of Markov jump processes with state space the leaves of that tree. They serve to describe the GREM-like trap model of Sasaki and Nemoto. Under suitable conditions on the parameters of the trap model, we establish its infinite volume limit, given by what we call a $K$-process in an infinite $k$-level tree. From this we deduce that the $K$-process also is the scaling limit of the GREM-like trap model on extreme time scales under a fine tuning assumption on the volumes.
We consider a class of continuous-time stochastic growth models on $d$-dimensional lattice with non-negative real numbers as possible values per site. We remark that the diffusive scaling limit proven in our previous work [Nagahata, Y., Yoshida, N.: Central Limit Theorem for a Class of Linear Systems, Electron. J. Probab. Vol. 14, No. 34, 960--977. (2009)] can be extended to wider class of models so that it covers the cases of potlatch/smoothing processes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا