ﻻ يوجد ملخص باللغة العربية
We study K-processes, which are Markov processes in a denumerable state space, all of whose elements are stable, with the exception of a single state, starting from which the process enters finite sets of stable states with uniform distribution. We show how these processes arise, in a particular instance, as scaling limits of the trap model in the complete graph, and subsequently derive aging results for those models in this context.
We obtain scaling limit results for asymmetric trap models and their infinite volume counterparts, namely asymmetric K processes. Aging results for the latter processes are derived therefrom.
We introduce trap models on a finite volume $k$-level tree as a class of Markov jump processes with state space the leaves of that tree. They serve to describe the GREM-like trap model of Sasaki and Nemoto. Under suitable conditions on the parameters
We discuss the long term behaviour of trap models on the integers with asymptotically vanishing drift, providing scaling limit theorems and ageing results. Depending on the tail behaviour of the traps and the strength of the drift, we identify three
We give the ``quenched scaling limit of Bouchauds trap model in ${dge 2}$. This scaling limit is the fractional-kinetics process, that is the time change of a $d$-dimensional Brownian motion by the inverse of an independent $alpha$-stable subordinator.
We consider the two dimensional version of a drainage network model introduced by Gangopadhyay, Roy and Sarkar, and show that the appropriately rescaled family of its paths converges in distribution to the Brownian web. We do so by verifying the conv