ترغب بنشر مسار تعليمي؟ اضغط هنا

Charged pion form factor between Q^2=0.60 and 2.45 GeV^2. II. Determination of, and results for, the pion form factor

211   0   0.0 ( 0 )
 نشر من قبل Garth Huber
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The charged pion form factor, Fpi(Q^2), is an important quantity which can be used to advance our knowledge of hadronic structure. However, the extraction of Fpi from data requires a model of the 1H(e,epi+)n reaction, and thus is inherently model dependent. Therefore, a detailed description of the extraction of the charged pion form factor from electroproduction data obtained recently at Jefferson Lab is presented, with particular focus given to the dominant uncertainties in this procedure. Results for Fpi are presented for Q^2=0.60-2.45 GeV^2. Above Q^2=1.5 GeV^2, the Fpi values are systematically below the monopole parameterization that describes the low Q^2 data used to determine the pion charge radius. The pion form factor can be calculated in a wide variety of theoretical approaches, and the experimental results are compared to a number of calculations. This comparison is helpful in understanding the role of soft versus hard contributions to hadronic structure in the intermediate Q^2 regime.



قيم البحث

اقرأ أيضاً

The data analysis for the reaction H(e,e pi^+)n, which was used to determine values for the charged pion form factor Fpi for values of Q^2=0.6-1.6 GeV^2, has been repeated with careful inspection of all steps and special attention to systematic uncer tainties. Also the method used to extract Fpi from the measured longitudinal cross section was critically reconsidered. Final values for the separated longitudinal and transverse cross sections and the extracted values of Fpi are presented.
The H(e,epi+)n cross section was measured at four-momentum transfers of Q2=1.60 and 2.45 GeV2 at an invariant mass of the photon nucleon system of W=2.22 GeV. The charged pion form factor (F_pi) was extracted from the data by comparing the separated longitudinal pion electroproduction cross section to a Regge model prediction in which F_pi is a free parameter. The results indicate that the pion form factor deviates from the charge-radius constrained monopole form at these values of Q2 by one sigma, but is still far from its perturbative Quantum Chromo-Dynamics prediction.
202 - H.P. Blok , T. Horn , G.M. Huber 2008
Cross sections for the reaction ${^1}$H($e,epi^+$)$n$ were measured in Hall C at Thomas Jefferson National Accelerator Facility (JLab) using the CEBAF high-intensity, continous electron beam in order to determine the charged pion form factor. Data we re taken for central four-momentum transfers ranging from $Q^2$=0.60 to 2.45 GeV$^2$ at an invariant mass of the virtual photon-nucleon system of $W$=1.95 and 2.22 GeV. The measured cross sections were separated into the four structure functions $sigma_L$, $sigma_T$, $sigma_{LT}$, and $sigma_{TT}$. The various parts of the experimental setup and the analysis steps are described in detail, including the calibrations and systematic studies, which were needed to obtain high precision results. The different types of systematic uncertainties are also discussed. The results for the separated cross sections as a function of the Mandelstam variable $t$ at the different values of $Q^2$ are presented. Some global features of the data are discussed, and the data are compared with the results of some model calculations for the reaction ${^1}$H($e,epi^+$)$n$.
132 - Bing An Li 2009
A new limit of pion form factor at very large $Q^2$ is obtained by using a pion wave function determined from an effective chiral field theory of mesons. It shows that when $Q^2>>(1.8GeV)^2$ the pion form factor reaches the asymptotic limit ${alpha_s(Q^2)over Q^2}$.
155 - T. Horn , et al 2007
The $^{1}$H($e,e^prime pi^+$)n cross section was measured for a range of four-momentum transfer up to $Q^2$=3.91 GeV$^2$ at values of the invariant mass, $W$, above the resonance region. The $Q^2$-dependence of the longitudinal component is consisten t with the $Q^2$-scaling prediction for hard exclusive processes. This suggests that perturbative QCD concepts are applicable at rather low values of $Q^2$. Pion form factor results, while consistent with the $Q^2$-scaling prediction, are inconsistent in magnitude with perturbative QCD calculations. The extraction of Generalized Parton Distributions from hard exclusive processes assumes the dominance of the longitudinal term. However, transverse contributions to the cross section are still significant at $Q^2$=3.91 GeV$^2$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا