ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase transitions in systems of magnetic dipoles on a square lattice with quenched disorder

111   0   0.0 ( 0 )
 نشر من قبل Juan J. Alonso
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف J.J.Alonso




اسأل ChatGPT حول البحث

We study by Monte Carlo simulations the effect of quenched orientational disorder in systems of interacting classical dipoles on a square lattice. Each dipole can lie along any of two perpendicular axes that form an angle psi with the principal axes of the lattice. We choose psi at random and without bias from the interval [-Delta, Delta] for each site of the lattice. For 0<Delta <~ pi/4 we find a thermally driven second order transition between a paramagnetic and a dipolar antiferromagnetic order phase and critical exponents that change continously with Delta. Near the case of maximum disorder Delta ~ pi/4 we still find a second order transition at a finite temperature T_c but our results point to weak instead of {it strong} long-ranged dipolar order for temperatures below T_c.



قيم البحث

اقرأ أيضاً

Quantum Monte Carlo simulations are used to study the magnetic and transport properties of the Hubbard Model, and its strong coupling Heisenberg limit, on a one-third depleted square lattice. This is the geometry occupied, after charge ordering, by t he spin-$frac{1}{2}$ Ni$^{1+}$ atoms in a single layer of the nickelate materials La$_4$Ni$_3$O$_8$ and (predicted) La$_3$Ni$_2$O$_6$. Our model is also a description of strained graphene, where a honeycomb lattice has bond strengths which are inequivalent. For the Heisenberg case, we determine the location of the quantum critical point (QCP) where there is an onset of long range antiferromagnetic order (LRAFO), and the magnitude of the order parameter, and then compare with results of spin wave theory. An ordered phase also exists when electrons are itinerant. In this case, the growth in the antiferromagnetic structure factor coincides with the transition from band insulator to metal in the absence of interactions.
We prove that for quantum lattice systems in d<=2 dimensions the addition of quenched disorder rounds any first order phase transition in the corresponding conjugate order parameter, both at positive temperatures and at T=0. For systems with continuo us symmetry the statement extends up to d<=4 dimensions. This establishes for quantum systems the existence of the Imry-Ma phenomenon which for classical systems was proven by Aizenman and Wehr. The extension of the proof to quantum systems is achieved by carrying out the analysis at the level of thermodynamic quantities rather than equilibrium states.
We present an extensive analysis of transport properties in superdiffusive two dimensional quenched random media, obtained by packing disks with radii distributed according to a Levy law. We consider transport and scaling properties in samples packed with two different procedures, at fixed filling fraction and at self-similar packing, and we clarify the role of the two procedures in the superdiffusive effects. Using the behavior of the filling fraction in finite size systems as the main geometrical parameter, we define an effective Levy exponents that correctly estimate the finite size effects. The effective Levy exponent rules the dynamical scaling of the main transport properties and identify the region where superdiffusive effects can be detected.
We study partially occupied lattice systems of classical magnetic dipoles which point along randomly oriented axes. Only dipolar interactions are taken into account. The aim of the model is to mimic collective effects in disordered assemblies of magn etic nanoparticles. From tempered Monte Carlo simulations, we obtain the following equilibrium results. The zero temperature entropy approximately vanishes. Below a temperature T_c, given by k_B T_c= (0.95 +- 0.1)x e_d, where e_d is a nearest neighbor dipole-dipole interaction energy and x is the site occupancy rate, we find a spin glass phase. In it, (1) the mean value <|q|>, where q is the spin overlap, decreases algebraically with system size N as N increases, and (2) D|q| = 0.5 <|q|> (T/x)^1/2, independently of N, where D|q| is the root mean square deviation of |q|.
We study equilibrium properties of catalytically-activated $A + A to oslash$ reactions taking place on a lattice of adsorption sites. The particles undergo continuous exchanges with a reservoir maintained at a constant chemical potential $mu$ and rea ct when they appear at the neighbouring sites, provided that some reactive conditions are fulfilled. We model the latter in two different ways: In the Model I some fraction $p$ of the {em bonds} connecting neighbouring sites possesses special catalytic properties such that any two $A$s appearing on the sites connected by such a bond instantaneously react and desorb. In the Model II some fraction $p$ of the adsorption {em sites} possesses such properties and neighbouring particles react if at least one of them resides on a catalytic site. For the case of textit{annealed} disorder in the distribution of the catalyst, which is tantamount to the situation when the reaction may take place at any point on the lattice but happens with a finite probability $p$, we provide an exact solution for both models for the interior of an infinitely large Cayley tree - the so-called Bethe lattice. We show that both models exhibit a rich critical behaviour: For the annealed Model I it is characterised by a transition into an ordered state and a re-entrant transition into a disordered phase, which both are continuous. For the annealed Model II, which represents a rather exotic model of statistical mechanics in which interactions of any particle with its environment have a peculiar Boolean form, the transition to an ordered state is always continuous, while the re-entrant transition into the disordered phase may be either continuous or discontinuous, depending on the value of $p$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا