ﻻ يوجد ملخص باللغة العربية
We study by Monte Carlo simulations the effect of quenched orientational disorder in systems of interacting classical dipoles on a square lattice. Each dipole can lie along any of two perpendicular axes that form an angle psi with the principal axes of the lattice. We choose psi at random and without bias from the interval [-Delta, Delta] for each site of the lattice. For 0<Delta <~ pi/4 we find a thermally driven second order transition between a paramagnetic and a dipolar antiferromagnetic order phase and critical exponents that change continously with Delta. Near the case of maximum disorder Delta ~ pi/4 we still find a second order transition at a finite temperature T_c but our results point to weak instead of {it strong} long-ranged dipolar order for temperatures below T_c.
Quantum Monte Carlo simulations are used to study the magnetic and transport properties of the Hubbard Model, and its strong coupling Heisenberg limit, on a one-third depleted square lattice. This is the geometry occupied, after charge ordering, by t
We prove that for quantum lattice systems in d<=2 dimensions the addition of quenched disorder rounds any first order phase transition in the corresponding conjugate order parameter, both at positive temperatures and at T=0. For systems with continuo
We present an extensive analysis of transport properties in superdiffusive two dimensional quenched random media, obtained by packing disks with radii distributed according to a Levy law. We consider transport and scaling properties in samples packed
We study partially occupied lattice systems of classical magnetic dipoles which point along randomly oriented axes. Only dipolar interactions are taken into account. The aim of the model is to mimic collective effects in disordered assemblies of magn
We study equilibrium properties of catalytically-activated $A + A to oslash$ reactions taking place on a lattice of adsorption sites. The particles undergo continuous exchanges with a reservoir maintained at a constant chemical potential $mu$ and rea