ترغب بنشر مسار تعليمي؟ اضغط هنا

Order-disorder transitions in lattice gases with annealed reactive constraints

94   0   0.0 ( 0 )
 نشر من قبل Maxym Dudka
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study equilibrium properties of catalytically-activated $A + A to oslash$ reactions taking place on a lattice of adsorption sites. The particles undergo continuous exchanges with a reservoir maintained at a constant chemical potential $mu$ and react when they appear at the neighbouring sites, provided that some reactive conditions are fulfilled. We model the latter in two different ways: In the Model I some fraction $p$ of the {em bonds} connecting neighbouring sites possesses special catalytic properties such that any two $A$s appearing on the sites connected by such a bond instantaneously react and desorb. In the Model II some fraction $p$ of the adsorption {em sites} possesses such properties and neighbouring particles react if at least one of them resides on a catalytic site. For the case of textit{annealed} disorder in the distribution of the catalyst, which is tantamount to the situation when the reaction may take place at any point on the lattice but happens with a finite probability $p$, we provide an exact solution for both models for the interior of an infinitely large Cayley tree - the so-called Bethe lattice. We show that both models exhibit a rich critical behaviour: For the annealed Model I it is characterised by a transition into an ordered state and a re-entrant transition into a disordered phase, which both are continuous. For the annealed Model II, which represents a rather exotic model of statistical mechanics in which interactions of any particle with its environment have a peculiar Boolean form, the transition to an ordered state is always continuous, while the re-entrant transition into the disordered phase may be either continuous or discontinuous, depending on the value of $p$.



قيم البحث

اقرأ أيضاً

309 - H Chamati , S Romano 2007
The present paper considers some classical ferromagnetic lattice--gas models, consisting of particles that carry $n$--component spins ($n=2,3$) and associated with a $D$--dimensional lattice ($D=2,3$); each site can host one particle at most, thus im plicitly allowing for hard--core repulsion; the pair interaction, restricted to nearest neighbors, is ferromagnetic, and site occupation is also controlled by the chemical potential $mu$. The models had previously been investigated by Mean Field and Two--Site Cluster treatments (when D=3), as well as Grand--Canonical Monte Carlo simulation in the case $mu=0$, for both D=2 and D=3; the obtained results showed the same kind of critical behaviour as the one known for their saturated lattice counterparts, corresponding to one particle per site. Here we addressed by Grand--Canonical Monte Carlo simulation the case where the chemical potential is negative and sufficiently large in magnitude; the value $mu=-D/2$ was chosen for each of the four previously investigated counterparts, together with $mu=-3D/4$ in an additional instance. We mostly found evidence of first order transitions, both for D=2 and D=3, and quantitatively characterized their behaviour. Comparisons are also made with recent experimental results.
We prove that for quantum lattice systems in d<=2 dimensions the addition of quenched disorder rounds any first order phase transition in the corresponding conjugate order parameter, both at positive temperatures and at T=0. For systems with continuo us symmetry the statement extends up to d<=4 dimensions. This establishes for quantum systems the existence of the Imry-Ma phenomenon which for classical systems was proven by Aizenman and Wehr. The extension of the proof to quantum systems is achieved by carrying out the analysis at the level of thermodynamic quantities rather than equilibrium states.
93 - Hajime Yoshino 2017
We construct and analyze a family of $M$-component vectorial spin systems which exhibit glass transitions and jamming within supercooled paramagnetic states without quenched disorder. Our system is defined on lattices with connectivity $c=alpha M$ an d becomes exactly solvable in the limit of large number of components $M to infty$. We consider generic $p$-body interactions between the vectorial Ising/continuous spins with linear/non-linear potentials. The existence of self-generated randomness is demonstrated by showing that the random energy model is recovered from a $M$-component ferromagnetic $p$-spin Ising model in $M to infty$ and $p to infty$ limit. In our systems the quenched disorder, if present, and the self-generated disorder act additively. Our theory provides a unified mean-field theoretical framework for glass transitions of rotational degree of freedoms such as orientation of molecules in glass forming liquids, color angles in continuous coloring of graphs and vector spins of geometrically frustrated magnets. The rotational glass transitions accompany various types of replica symmetry breaking. In the case of repulsive hardcore interactions in the spin space, continuous the criticality of the jamming or SAT/UNSTAT transition becomes the same as that of hardspheres.
We investigate the influence of time-varying environmental noise, i.e., temporal disorder, on the nonequilibrium phase transition of the contact process. Combining a real-time renormalization group, scaling theory, and large scale Monte-Carlo simulat ions in one and two dimensions, we show that the temporal disorder gives rise to an exotic critical point. At criticality, the effective noise amplitude diverges with increasing time scale, and the probability distribution of the density becomes infinitely broad, even on a logarithmic scale. Moreover, the average density and survival probability decay only logarithmically with time. This infinite-noise critical behavior can be understood as the temporal counterpart of infinite-randomness critical behavior in spatially disordered systems, but with exchanged roles of space and time. We also analyze the generality of our results, and we discuss potential experiments.
127 - Yagmur Kati 2021
The interplay of fluctuations, ergodicity, and disorder in many-body interacting systems has been striking attention for half a century, pivoted on two celebrated phenomena: Anderson localization predicted in disordered media, and Fermi-Pasta-Ulam-Ts ingou (FPUT) recurrence observed in a nonlinear system. The destruction of Anderson localization by nonlinearity and the recovery of ergodicity after long enough computational times lead to more questions. This thesis is devoted to contributing to the insight of the nonlinear system dynamics in and out of equilibrium. Focusing mainly on the GP lattice, we investigated elementary fluctuations close to zero temperature, localization properties, the chaotic subdiffusive regimes, and the non-equipartition of energy in non-Gibbs regime. Initially, we probe equilibrium dynamics in the ordered GP lattice and report a weakly non-ergodic dynamics, and an ergodic part in the non-Gibbs phase that implies the Gibbs distribution should be modified. Next, we include disorder in GP lattice, and build analytical expressions for the thermodynamic properties of the ground state, and identify a Lifshits glass regime where disorder dominates over the interactions. In the opposite strong interaction regime, we investigate the elementary excitations above the ground state and found a dramatic increase of the localization length of Bogoliubov modes (BM) with increasing particle density. Finally, we study non-equilibrium dynamics with disordered GP lattice by performing novel energy and norm density resolved wave packet spreading. In particular, we observed strong chaos spreading over several decades, and identified a Lifshits phase which shows a significant slowing down of sub-diffusive spreading.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا