ترغب بنشر مسار تعليمي؟ اضغط هنا

Structure-Property Relation of SrTiO3-LaAlO3 Interfaces

304   0   0.0 ( 0 )
 نشر من قبل Mark Huijben
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A large variety of transport properties have been observed at the interface between the insulating oxides SrTiO3 and LaAlO3 such as insulation, 2D interface metallicity, 3D bulk metallicity, Kondo scattering, magnetism and superconductivity. The relation between the structure and the properties of the SrTiO3-LaAlO3 interface can be explained in a meaningful way by taking into account the relative contribution of three structural aspects: oxygen vacancies, structural deformations (including cation disorder) and electronic interface reconstruction. The emerging phase diagram is much richer than for related bulk oxides due to the occurrence of interface electronic reconstruction. The observation of this interface phenomenon is a display of recent advances in thin film deposition and characterization techniques, and provides an extension to the range of exceptional electronic properties of complex oxides.



قيم البحث

اقرأ أيضاً

We formulate a model for magnetic and superconducting ordering at LaAlO3/SrTiO3 interfaces containing both localized magnetic moments and itinerant electrons. Though these both originate in Ti 3d orbitals, the former may be due to electrons more tigh tly-bound to the interface while the latter are extended over several layers. Only the latter contribute significantly to metallic conduction and superconductivity. In our model, the interplay between the two types of electrons, which is argued to be ferromagnetic, combined with strong spin-orbit coupling of the itinerant electrons, leads to magnetic ordering. Furthermore, we propose a model for interfacial superconductivity, consisting of random superconducting grains in the bulk STO driven, via coupling to the interface conduction band, towards long-ranged or quasi-long-ranged order. Most interestingly, the magnetic order and strong spin orbit coupling can lead in this manner to unconventional interfacial superconductivity, yielding a possible realization of Majorana physics.
The discovery of a two-dimensional (2D) electron gas at the (110)-oriented LaAlO3/SrTiO3 in- terface provided us with the opportunity to probe the effect of crystallographic orientation and the ensuing electronic reconstructions on interface properti es beyond the conventional (001)-orientation. At temperatures below 200 mK, we have measured 2D superconductivity with a spatial extension significantly larger (d approx. 24 - 30 nm) than previously reported for (001)-oriented LaAlO3/SrTiO3 interfaces (d approx. 10 nm). The more extended superconductivity brings about the absence of violation of the Pauli paramagnetic limit for the upper critical fields, signaling the distinctive nature of the electronic structure of the (110)-oriented interface with respect to their (001)-counterparts
87 - Xiaorong Zhou , Zhiqi Liu 2021
The relative significance of quantum conductivity correction and magnetic nature of electrons in understanding the intriguing low-temperature resistivity minimum and negative magnetoresistance of the two-dimensional electron gas at LaAlO3/SrTiO3 inte rfaces has been a long outstanding issue since its discovery. Here we report a comparative magnetotransport study on amorphous and oxygen-annealed crystalline LaAlO3/SrTiO3 heterostructures at a relatively high-temperature range, where the orbital scattering is largely suppressed by thermal fluctuations. Despite of a predominantly negative out-of-plane magnetoresistance effect for both, the magnetotransport is isotropic for amorphous LaAlO3/SrTiO3 while strongly anisotropic and well falls into a two-dimensional quantum correction frame for annealed crystalline LaAlO3/SrTiO3. These results clearly indicate that a large portion of electrons from oxygen vacancies are localized at low temperatures, serving as magnetic centers, while the electrons from the polar field are only weakly localized due to constructive interference between time-reversed electron paths in the clean limit and no signature of magnetic nature is visible.
Emergent phenomena, including superconductivity and magnetism, found in the two-dimensional electron liquid (2-DEL) at the interface between the insulators LaAlO3 and SrTiO3 distinguish this rich system from conventional two-dimensional electron gase s at compound semiconductor interfaces. The origin of this 2-DEL, however, is highly debated with focus on the role of defects in the SrTiO3 while the LaAlO3 has been assumed perfect. Our experiments and first principles calculations show that the cation stoichiometry of the nominal LaAlO3 layer is key to 2-DEL formation: only Al-rich LaAlO3 results in a 2-DEL. While extrinsic defects including oxygen deficiency are known to render LaAlO3/SrTiO3 samples conducting, our results show that in the absence of such extrinsic defects, an interface 2-DEL can form. Its origin is consistent with an intrinsic electronic reconstruction occurring to counteract a polarization catastrophe. This work provides a roadmap for identifying other interfaces where emergent behaviors await discovery.
Possible ferromagnetism induced in otherwise non-magnetic materials has been motivating intense research in complex oxide heterostructures. Here we show that a confined magnetism is realized at the interface between SrTiO3 and two insulating polar ox ides, BiMnO3 and LaAlO3. By using polarization dependent x-ray absorption spectroscopy, we find that in both cases the magnetic order is stabilized by a negative exchange interaction between the electrons transferred to the interface and local magnetic moments. These local magnetic moments are associated to Ti3+ ions at the interface itself for LaAlO3/SrTiO3 and to Mn3+ ions in the overlayer for BiMnO3/SrTiO3. In LaAlO3/SrTiO3 the induced magnetic moments are quenched by annealing in oxygen, suggesting a decisive role of oxygen vacancies in the stabilization of interfacial magnetism.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا