ﻻ يوجد ملخص باللغة العربية
Possible ferromagnetism induced in otherwise non-magnetic materials has been motivating intense research in complex oxide heterostructures. Here we show that a confined magnetism is realized at the interface between SrTiO3 and two insulating polar oxides, BiMnO3 and LaAlO3. By using polarization dependent x-ray absorption spectroscopy, we find that in both cases the magnetic order is stabilized by a negative exchange interaction between the electrons transferred to the interface and local magnetic moments. These local magnetic moments are associated to Ti3+ ions at the interface itself for LaAlO3/SrTiO3 and to Mn3+ ions in the overlayer for BiMnO3/SrTiO3. In LaAlO3/SrTiO3 the induced magnetic moments are quenched by annealing in oxygen, suggesting a decisive role of oxygen vacancies in the stabilization of interfacial magnetism.
A detailed defect energy level map was investigated for heterostructures of 26 unit cells of LaAlO3 on SrTiO3 prepared at a low oxygen partial pressure of 10-6 mbar. The origin is attributed to the presence of dominating oxygen defects in SrTiO3 subs
In heterostructures of LaAlO3 (LAO) and SrTiO3 (STO), two nonmagnetic insulators, various forms of magnetism have been observed [1-7], which may [8, 9] or may not [10] arise from interface charge carriers that migrate from the LAO to the interface in
Here we investigate LaAlO_3-SrTiO_3 heterostructure withdelta-doping of the interface by LaMnO_3 at less than one monolayer. This doping strongly inhibits the formation of mobile electron layer at the interface. This results in giant increase of the
Using polarized neutron reflectometry (PNR) we measured the neutron spin dependent reflectivity from four LaAlO3/SrTiO3 superlattices. This experiment implies that the upper limit for the magnetization induced by an 11 T magnetic field at 1.7 K is 2
We have investigated the dimensionality and origin of the magnetotransport properties of LaAlO3 films epitaxially grown on TiO2-terminated SrTiO3(001) substrates. High mobility conduction is observed at low deposition oxygen pressures (PO2 < 10^-5 mb