ﻻ يوجد ملخص باللغة العربية
The centrality dependence of the midrapidity charged-particle multiplicity density ($|eta|$$<$1) is presented for Au+Au and Cu+Cu collisions at RHIC over a broad range of collision energies. The multiplicity measured in the Cu+Cu system is found to be similar to that measured in the Au+Au system, for an equivalent N$_{rm part}$, with the observed factorization in energy and centrality still persistent in the smaller Cu+Cu system. The extent of the similarities observed for bulk particle production is tested by a comparative analysis of the inclusive transverse momentum distributions for Au+Au and Cu+Cu collisions near midrapidity. It is found that, within the uncertainties of the data, the ratio of yields between the various energies for both Au+Au and Cu+Cu systems are similar and constant with centrality, both in the bulk yields as well as a function of p$_{rm T}$, up to at least 4 GeV/$c$. The effects of multiple nucleon collisions that strongly increase with centrality and energy appear to only play a minor role in bulk and intermediate transverse momentum particle production.
The fragmentation of quasi-projectiles from the nuclear reaction $^{40}Ca$ + $^{12}C$ at 25 MeV/nucleon was used to produce excited states candidates to $alpha$-particle condensation. The experiment was performed at LNS-Catania using the CHIMERA mult
Particle production in relativistic collisions of heavy nuclei is analyzed in a wide range of incident energies 2.7 GeV $le sqrt{s_{NN}}le$ 62.4 GeV. The analysis is performed within the three-fluid model employing three different equations of state
We review studies of vortical motion and the resulting global polarization of $Lambda$ and $bar{Lambda}$ hyperons in heavy-ion collisions, in particular, within 3FD model. 3FD predictions for the global midrapidity polarization in the FAIR-NICA energ
We review hadron production in heavy ion collisions with emphasis on pion and kaon production at energies below 2 AGeV and on partonic collectivity at RHIC energies.
Recent results related to the chemical equilibration of hadrons in the final state of p-p and heavy ion collisions are reviewed.