ﻻ يوجد ملخص باللغة العربية
Bayesian model selection provides a powerful and mathematically transparent framework to tackle hypothesis testing, such as detection tests of gravitational waves emitted during the coalescence of binary systems using ground-based laser interferometers. Although its implementation is computationally intensive, we have developed an efficient probabilistic algorithm based on a technique known as nested sampling that makes Bayesian model selection applicable to follow-up studies of candidate signals produced by on-going searches of inspiralling compact binaries. We discuss the performance of this approach, in terms of false alarm rate and detection probability of restricted second post-Newtonian inspiral waveforms from non-spinning compact objects in binary systems. The results confirm that this approach is a viable tool for detection tests in current searches for gravitational wave signals.
The analysis of gravitational wave data involves many model selection problems. The most important example is the detection problem of selecting between the data being consistent with instrument noise alone, or instrument noise and a gravitational wa
Observations of gravitational waves from compact binary mergers have enabled unique tests of general relativity in the dynamical and non-linear regimes. One of the most important such tests are constraints on the post-Newtonian (PN) corrections to th
Advanced LIGO data contains numerous noise transients, or glitches, that have been shown to reduce the sensitivity of matched filter searches for gravitational waves from compact binaries by increasing the rate at which random coincidences occur. The
With the advanced LIGO and Virgo detectors taking observations the detection of gravitational waves is expected within the next few years. Extracting astrophysical information from gravitational wave detections is a well-posed problem and thoroughly
We introduce a novel methodology for the operation of an early %warning alert system for gravitational waves. It is based on short convolutional neural networks. We focus on compact binary coalescences, for light, intermediate and heavy binary-neutro