ﻻ يوجد ملخص باللغة العربية
Advanced LIGO data contains numerous noise transients, or glitches, that have been shown to reduce the sensitivity of matched filter searches for gravitational waves from compact binaries by increasing the rate at which random coincidences occur. The presence of these transients has precipitated extensive work to establish that observed gravitational wave events are astrophysical in nature. We discuss the response of the PyCBC search for gravitational waves from stellar mass binaries to various common glitches that were observed during Advanced LIGOs first and second observing runs. We show how these transients can mimic waveforms from compact binary coalescences and quantify the likelihood that a given class of glitches will create a trigger in the search pipeline. We explore the specific waveform parameters that are most similar to different glitch classes and demonstrate how knowledge of these similarities can be used when evaluating the significance of gravitational-wave candidates.
We present the first application of a hierarchical Markov Chain Monte Carlo (MCMC) follow-up on continuous gravitational-wave candidates from real-data searches. The follow-up uses an MCMC sampler to draw parameter-space points from the posterior dis
We describe a general approach to detection of transient gravitational-wave signals in the presence of non-Gaussian background noise. We prove that under quite general conditions, the ratio of the likelihood of observed data to contain a signal to th
A consequence of adopting a modified gravitational theory (MOG) for the aLIGO GW190521 gravitational wave detection involving binary black hole sources is to fit the aLIGO strain and chirp data with lower mass, compact coalescing binary systems such
Bayesian model selection provides a powerful and mathematically transparent framework to tackle hypothesis testing, such as detection tests of gravitational waves emitted during the coalescence of binary systems using ground-based laser interferomete
Cosmic Explorer (CE) is a next-generation ground-based gravitational-wave observatory concept, envisioned to begin operation in the 2030s, and expected to be capable of observing binary neutron star and black hole mergers back to the time of the firs