ﻻ يوجد ملخص باللغة العربية
We find all intrinsic measures of $C^{1,1}$ smooth submanifolds in the Engel group, showing that they are equivalent to the corresponding $d$-dimensional spherical Hausdorff measure restricted to the submanifold. The integer $d$ is the degree of the submanifold. These results follow from a different approach to negligibility, based on a blow-up technique.
We give an explicit classification of translation-invariant, Lorentz-invariant continuous valuations on convex sets. We also classify the Lorentz-invariant even generalized valuations.
We relate the existence of many infinite geodesics on Alexandrov spaces to a statement about the average growth of volumes of balls. We deduce that the geodesic flow exists and preserves the Liouville measure in several important cases. The developed
In this paper, we will study the (linear) geometric analysis on metric measure spaces. We will establish a local Li-Yaus estimate for weak solutions of the heat equation and prove a sharp Yaus gradient gradient for harmonic functions on metric measur
This paper deals with the subject of infinitesimal variations of Euclidean submanifolds with arbitrary dimension and codimension. The main goal is to establish a Fundamental theorem for these geometric objects. Similar to the theory of isometric imme
In this thesis, we study the deformation problem of coisotropic submanifolds in Jacobi manifolds. In particular we attach two algebraic invariants to any coisotropic submanifold $S$ in a Jacobi manifold, namely the $L_infty[1]$-algebra and the BFV-co