ترغب بنشر مسار تعليمي؟ اضغط هنا

Local Li-Yaus estimates on $RCD^*(K,N)$ metric measure spaces

85   0   0.0 ( 0 )
 نشر من قبل Hui-Chun Zhang
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we will study the (linear) geometric analysis on metric measure spaces. We will establish a local Li-Yaus estimate for weak solutions of the heat equation and prove a sharp Yaus gradient gradient for harmonic functions on metric measure spaces, under the Riemannian curvature-dimension condition $RCD^*(K,N).$



قيم البحث

اقرأ أيضاً

In this paper, we will prove the Weyls law for the asymptotic formula of Dirichlet eigenvalues on metric measure spaces with generalized Ricci curvature bounded from below.
In this paper, we establish a Bochner type formula on Alexandrov spaces with Ricci curvature bounded below. Yaus gradient estimate for harmonic functions is also obtained on Alexandrov spaces.
We relate the existence of many infinite geodesics on Alexandrov spaces to a statement about the average growth of volumes of balls. We deduce that the geodesic flow exists and preserves the Liouville measure in several important cases. The developed analytic tool has close ties to integral geometry.
In the previous work [35], the second and third authors established a Bochner type formula on Alexandrov spaces. The purpose of this paper is to give some applications of the Bochner type formula. Firstly, we extend the sharp lower bound estimates of spectral gap, due to Chen-Wang [9, 10] and Bakry-Qian [6], from smooth Riemannian manifolds to Alexandrov spaces. As an application, we get an Obata type theorem for Alexandrov spaces. Secondly, we obtain (sharp) Li-Yaus estimate for positve solutions of heat equations on Alexandrov spaces.
138 - Jian Ge 2020
In this note, we estimate the upper bound of volume of closed positively or nonnegatively curved Alexandrov space $X$ with strictly convex boundary. We also discuss the equality case. In particular, the Boundary Conjecture holds when the volume upper bound is achieved. Our theorem also can be applied to Riemannian manifolds with non-smooth boundary, which generalizes Heintze and Karchers classical volume comparison theorem. Our main tool is the gradient flow of semi-concave functions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا