ﻻ يوجد ملخص باللغة العربية
We introduce a new definition of a generalized logarithmic module of multiarrangements by uniting those of the logarithmic derivation and the differential modules. This module is realized as a logarithmic derivation module of an arrangement of hyperplanes with a multiplicity consisting of both positive and negative integers. We consider several properties of this module including Saitos criterion and reflexivity. As applications, we prove a shift isomorphism and duality of some Coxeter multiarrangements by using the primitive derivation.
We prove a duality theorem for graded algebras over a field that implies several known duality results : graded local dualit
Hyperplane Arrangements of rank $3$ admitting an unbalanced Ziegler restriction are known to fulfill Teraos conjecture. This long-standing conjecture asks whether the freeness of an arrangement is determined by its combinatorics. In this note, we pro
Let $W$ be a finite irreducible real reflection group, which is a Coxeter group. We explicitly construct a basis for the module of differential 1-forms with logarithmic poles along the Coxeter arrangement by using a primitive derivation. As a consequ
Let $R$ be a commutative ring. We show that any complete duality pair gives rise to a theory of relative homological algebra, analogous to Gorenstein homological algebra. Indeed Gorenstein homological algebra over a commutative Noetherian ring of fin
We prove a duality theorem for certain graded algebras and show by various examples different kinds of failure of tameness of local cohomology.