ترغب بنشر مسار تعليمي؟ اضغط هنا

A primitive derivation and logarithmic differential forms of Coxeter arrangements

146   0   0.0 ( 0 )
 نشر من قبل Hiroaki Terao
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $W$ be a finite irreducible real reflection group, which is a Coxeter group. We explicitly construct a basis for the module of differential 1-forms with logarithmic poles along the Coxeter arrangement by using a primitive derivation. As a consequence, we extend the Hodge filtration, indexed by nonnegative integers, into a filtration indexed by all integers. This filtration coincides with the filtration by the order of poles. The results are translated into the derivation case.



قيم البحث

اقرأ أيضاً

118 - Atsushi Wakamiko 2010
Let $A$ be an irreducible Coxeter arrangement and $bfk$ be a multiplicity of $A$. We study the derivation module $D(A, bfk)$. Any two-dimensional irreducible Coxeter arrangement with even number of lines is decomposed into two orbits under the action of the Coxeter group. In this paper, we will {explicitly} construct a basis for $D(A, bfk)$ assuming $bfk$ is constant on each orbit. Consequently we will determine the exponents of $(A, bfk)$ under this assumption. For this purpose we develop a theory of universal derivations and introduce a map to deal with our exceptional cases.
143 - Takuro Abe 2008
We introduce a new definition of a generalized logarithmic module of multiarrangements by uniting those of the logarithmic derivation and the differential modules. This module is realized as a logarithmic derivation module of an arrangement of hyperp lanes with a multiplicity consisting of both positive and negative integers. We consider several properties of this module including Saitos criterion and reflexivity. As applications, we prove a shift isomorphism and duality of some Coxeter multiarrangements by using the primitive derivation.
Let $A$ be an irreducible Coxeter arrangement and $W$ be its Coxeter group. Then $W$ naturally acts on $A$. A multiplicity $bfm : Arightarrow Z$ is said to be equivariant when $bfm$ is constant on each $W$-orbit of $A$. In this article, we prove that the multi-derivation module $D(A, bfm)$ is a free module whenever $bfm$ is equivariant by explicitly constructing a basis, which generalizes the main theorem of cite{T02}. The main tool is a primitive derivation and its covariant derivative. Moreover, we show that the $W$-invariant part $D(A, bfm)^{W}$ for any multiplicity $bfm$ is a free module over the $W$-invariant subring.
154 - Martin H. Weissman 2017
When $W$ is a finite Coxeter group acting by its reflection representation on $E$, we describe the category ${mathsf{Perv}}_W(E_{mathbb C}, {mathcal{H}}_{mathbb C})$ of $W$-equivariant perverse sheaves on $E_{mathbb C}$, smooth with respect to the st ratification by reflection hyperplanes. By using Kapranov and Schechtmans recent analysis of perverse sheaves on hyperplane arrangements, we find an equivalence of categories from ${mathsf{Perv}}_W(E_{mathbb C}, {mathcal{H}}_{mathbb C})$ to a category of finite-dimensional modules over an algebra given by explicit generators and relations. We also define categories of equivariant perverse sheaves on affine buildings, e.g., $G$-equivariant perverse sheaves on the Bruhat--Tits building of a $p$-adic group $G$. In this setting, we find that a construction of Schneider and Stuhler gives equivariant perverse sheaves associated to depth zero representations.
Let B be a real hyperplane arrangement which is stable under the action of a Coxeter group W. Then B acts naturally on the set of chambers of B. We assume that B is disjoint from the Coxeter arrangement A=A(W) of W. In this paper, we show that the W- orbits of the set of chambers of B are in one-to-one correspondence with the chambers of C=Acup B which are contained in an arbitrarily fixed chamber of A. From this fact, we find that the number of W-orbits of the set of chambers of B is given by the number of chambers of C divided by the order of W. We will also study the set of chambers of C which are contained in a chamber b of B. We prove that the cardinality of this set is equal to the order of the isotropy subgroup W_b of b. We illustrate these results with some examples, and solve an open problem in Kamiya, Takemura and Terao [Ranking patterns of unfolding models of codimension one, Adv. in Appl. Math. (2010)] by using our results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا