ﻻ يوجد ملخص باللغة العربية
We consider a type of long-range percolation problem on the positive integers, motivated by earlier work of others on the appearance of (in)finite words within a site percolation model. The main issue is whether a given infinite binary word appears within an iid Bernoulli sequence at locations that satisfy certain constraints. We settle the issue in some cases, and provide partial results in others.
There are various notions of dimension in fractal geometry to characterise (random and non-random) subsets of $mathbb R^d$. In this expository text, we discuss their analogues for infinite subsets of $mathbb Z^d$ and, more generally, for infinite gra
Let v, w be infinite 0-1 sequences, and m a positive integer. We say that w is m-embeddable in v, if there exists an increasing sequence n_{i} of integers with n_{0}=0, such that 0< n_{i} - n_{i-1} < m, w(i) = v(n_i) for all i > 0. Let X and Y be ind
We prove distributional convergence for a family of random processes on $mathbb{Z}$, which we call cooperative motions. The model generalizes the totally asymmetric hipster random walk introduced in [Addario-Berry, Cairns, Devroye, Kerriou and Mitche
We relate various concepts of fractal dimension of the limiting set C in fractal percolation to the dimensions of the set consisting of connected components larger than one point and its complement in C (the dust). In two dimensions, we also show tha
We study the scaling limit of a large class of voter model perturbations in one dimension, including stochastic Potts models, to a universal limiting object, the continuum voter model perturbation. The perturbations can be described in terms of bulk