ﻻ يوجد ملخص باللغة العربية
We relate various concepts of fractal dimension of the limiting set C in fractal percolation to the dimensions of the set consisting of connected components larger than one point and its complement in C (the dust). In two dimensions, we also show that the set consisting of connected components larger than one point is a.s. the union of non-trivial Holder continuous curves, all with the same exponent. Finally, we give a short proof of the fact that in two dimensions, any curve in the limiting set must have Hausdorff dimension strictly larger than 1.
There are various notions of dimension in fractal geometry to characterise (random and non-random) subsets of $mathbb R^d$. In this expository text, we discuss their analogues for infinite subsets of $mathbb Z^d$ and, more generally, for infinite gra
We consider a type of long-range percolation problem on the positive integers, motivated by earlier work of others on the appearance of (in)finite words within a site percolation model. The main issue is whether a given infinite binary word appears w
It is well-known that for a one dimensional stochastic differential equation driven by Brownian noise, with coefficient functions satisfying the assumptions of the Yamada-Watanabe theorem cite{yamada1,yamada2} and the Feller test for explosions cite{
Rigidity percolation (RP) is the emergence of mechanical stability in networks. Motivated by the experimentally observed fractal nature of materials like colloidal gels and disordered fiber networks, we study RP in a fractal network. Specifically, we
We introduce fractal liquids by generalizing classical liquids of integer dimensions $d = 1, 2, 3$ to a fractal dimension $d_f$. The particles composing the liquid are fractal objects and their configuration space is also fractal, with the same non-i