ﻻ يوجد ملخص باللغة العربية
The relationship between quantum phase transition and complex geometric phase for open quantum system governed by the non-Hermitian effective Hamiltonian with the accidental crossing of the eigenvalues is established. In particular, the geometric phase associated with the ground state of the one-dimensional dissipative Ising model in a transverse magnetic field is evaluated, and it is demonstrated that related quantum phase transition is of the first order.
For an arbitrary possibly non-Hermitian matrix Hamiltonian H, that might involve exceptional points, we construct an appropriate parameter space M and the lines bundle L^n over M such that the adiabatic geometric phases associated with the eigenstate
We study information theoretic geometry in time dependent quantum mechanical systems. First, we discuss global properties of the parameter manifold for two level systems exemplified by i) Rabi oscillations and ii) quenching dynamics of the XY spin ch
An open quantum system, whose time evolution is governed by a master equation, can be driven into a given pure quantum state by an appropriate design of the system-reservoir coupling. This points out a route towards preparing many body states and non
Unitary control and decoherence appear to be irreconcilable in quantum mechanics. When a quantum system interacts with an environment, control strategies usually fail due to decoherence. In this letter, we propose a time-optimal unitary control proto
If an open quantum system is initially uncorrelated from its environment, then its dynamics can be written in terms of a Lindblad-form master equation. The master equation is divided into a unitary piece, represented by an effective Hamiltonian, and