ﻻ يوجد ملخص باللغة العربية
We study information theoretic geometry in time dependent quantum mechanical systems. First, we discuss global properties of the parameter manifold for two level systems exemplified by i) Rabi oscillations and ii) quenching dynamics of the XY spin chain in a transverse magnetic field, when driven across anisotropic criticality. Next, we comment upon the nature of the geometric phase from classical holonomy analyses of such parameter manifolds. In the context of the transverse XY model in the thermodynamic limit, our results are in contradiction to those in the existing literature, and we argue why the issue deserves a more careful analysis. Finally, we speculate on a novel geometric phase in the model, when driven across a quantum critical line.
We construct a novel approach, based on thermodynamic geometry, to characterize first-order phase transitions from a microscopic perspective, through the scalar curvature in the equilibrium thermodynamic state space. Our method resolves key theoretic
We study the Killing vectors of the quantum ground-state manifold of a parameter-dependent Hamiltonian. We find that the manifold may have symmetries that are not visible at the level of the Hamiltonian and that different quantum phases of matter exh
When a second-order phase transition is crossed at fine rate, the evolution of the system stops being adiabatic as a result of the critical slowing down in the neighborhood of the critical point. In systems with a topologically nontrivial vacuum mani
The exponential growth of the out-of-time-ordered correlator (OTOC) has been proposed as a quantum signature of classical chaos. The growth rate is expected to coincide with the classical Lyapunov exponent. This quantum-classical correspondence has b
The relationship between quantum phase transition and complex geometric phase for open quantum system governed by the non-Hermitian effective Hamiltonian with the accidental crossing of the eigenvalues is established. In particular, the geometric pha