ترغب بنشر مسار تعليمي؟ اضغط هنا

Information field theory for cosmological perturbation reconstruction and non-linear signal analysis

258   0   0.0 ( 0 )
 نشر من قبل Torsten Ensslin
 تاريخ النشر 2009
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop information field theory (IFT) as a means of Bayesian inference on spatially distributed signals, the information fields. A didactical approach is attempted. Starting from general considerations on the nature of measurements, signals, noise, and their relation to a physical reality, we derive the information Hamiltonian, the source field, propagator, and interaction terms. Free IFT reproduces the well known Wiener-filter theory. Interacting IFT can be diagrammatically expanded, for which we provide the Feynman rules in position-, Fourier-, and spherical harmonics space, and the Boltzmann-Shannon information measure. The theory should be applicable in many fields. However, here, two cosmological signal recovery problems are discussed in their IFT-formulation. 1) Reconstruction of the cosmic large-scale structure matter distribution from discrete galaxy counts in incomplete galaxy surveys within a simple model of galaxy formation. We show that a Gaussian signal, which should resemble the initial density perturbations of the Universe, observed with a strongly non-linear, incomplete and Poissonian-noise affected response, as the processes of structure and galaxy formation and observations provide, can be reconstructed thanks to the virtue of a response-renormalization flow equation. 2) We design a filter to detect local non-linearities in the cosmic microwave background, which are predicted from some Early-Universe inflationary scenarios, and expected due to measurement imperfections. This filter is the optimal Bayes estimator up to linear order in the non-linearity parameter and can be used even to construct sky maps of non-linearities in the data.



قيم البحث

اقرأ أيضاً

We compare and contrast two different metric based formulations of non- linear cosmological perturbation theory: the MW2009 approach in [K. A. Malik and D. Wands, Phys. Rept. 475 (2009), 1.] following Bardeen and the recent approach of the paper KN20 10 [K. Nakamura, Advances in Astronomy 2010 (2010), 576273]. We present each formulation separately. In the MW2009 approach, one considers the gauge transformations of perturbative quantities, choosing a gauge by requiring that certain quantities vanish, rendering all other variables gauge invariant. In the KN2010 formalism, one decomposes the metric tensor into a gauge variant and gauge invariant part from the outset. We compare the two approaches in both the longitudinal and uniform curvature gauges. In the longitudinal gauge, we find that Nakamuras gauge invariant variables correspond exactly to those in the longitudinal gauge (i.e., for scalar perturbations, to the Bardeen potentials), and in the uniform curvature gauge we obtain the usual relationship between gauge invariant variables in the flat and longitudinal gauge. Thus, we show that these two approaches are equivalent.
NIFTY, Numerical Information Field Theory, is a software package designed to enable the development of signal inference algorithms that operate regardless of the underlying spatial grid and its resolution. Its object-oriented framework is written in Python, although it accesses libraries written in Cython, C++, and C for efficiency. NIFTY offers a toolkit that abstracts discretized representations of continuous spaces, fields in these spaces, and operators acting on fields into classes. Thereby, the correct normalization of operations on fields is taken care of automatically without concerning the user. This allows for an abstract formulation and programming of inference algorithms, including those derived within information field theory. Thus, NIFTY permits its user to rapidly prototype algorithms in 1D, and then apply the developed code in higher-dimensional settings of real world problems. The set of spaces on which NIFTY operates comprises point sets, n-dimensional regular grids, spherical spaces, their harmonic counterparts, and product spaces constructed as combinations of those. The functionality and diversity of the package is demonstrated by a Wiener filter code example that successfully runs without modification regardless of the space on which the inference problem is defined.
We present two-loop results for the quark condensate in an external magnetic field within chiral perturbation theory using coordinate space techniques. At finite temperature, we explore the impact of the magnetic field on the pion-pion interaction in the quark condensate for arbitrary pion masses and derive the correct weak magnetic field expansion in the chiral limit. At zero temperature, we provide the complete two-loop representation for the vacuum energy density and the quark condensate.
We prove the correspondence between the information geometry of a signal filter and a Kahler manifold. The information geometry of a minimum-phase linear system with a finite complex cepstrum norm is a Kahler manifold. The square of the complex cepst rum norm of the signal filter corresponds to the Kahler potential. The Hermitian structure of the Kahler manifold is explicitly emergent if and only if the impulse response function of the highest degree in $z$ is constant in model parameters. The Kahlerian information geometry takes advantage of more efficient calculation steps for the metric tensor and the Ricci tensor. Moreover, $alpha$-generalization on the geometric tensors is linear in $alpha$. It is also robust to find Bayesian predictive priors, such as superharmonic priors, because Laplace-Beltrami operators on Kahler manifolds are in much simpler forms than those of the non-Kahler manifolds. Several time series models are studied in the Kahlerian information geometry.
In this work, we investigate information freshness in a status update communication system consisting of a source-destination link. Initially, we study the properties of a sample path of the age of information (AoI) process at the destination. We obt ain a general formula of the stationary distribution of the AoI, under the assumption of ergodicity. We relate this result to a discrete time queueing system and provide a general expression of the generating function of AoI in relation with the system time and the peak age of information (PAoI) metric. Furthermore, we consider three different single-server system models and we obtain closed-form expressions of the generating functions and the stationary distributions of the AoI and the PAoI. The first model is a first-come-first-served (FCFS) queue, the second model is a preemptive last-come-first-served (LCFS) queue, and the last model is a bufferless system with packet dropping. We build upon these results to provide a methodology for analyzing general non-linear age functions for this type of systems, using representations of functions as power series.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا