ترغب بنشر مسار تعليمي؟ اضغط هنا

Chiral Perturbation Theory Analysis of the Quark Condensate in a Magnetic Field

67   0   0.0 ( 0 )
 نشر من قبل Christoph Peter Hofmann
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present two-loop results for the quark condensate in an external magnetic field within chiral perturbation theory using coordinate space techniques. At finite temperature, we explore the impact of the magnetic field on the pion-pion interaction in the quark condensate for arbitrary pion masses and derive the correct weak magnetic field expansion in the chiral limit. At zero temperature, we provide the complete two-loop representation for the vacuum energy density and the quark condensate.



قيم البحث

اقرأ أيضاً

We reconsider the problem of calculating the vacuum free energy (density) of QCD and the shift of the quark condensates in the presence of a uniform background magnetic field using two-and-three-flavor chiral perturbation theory ($chi$PT). Using the free energy, we calculate the degenerate, light quark condensates in the two-flavor case and the up, down and strange quark condensates in the three-flavor case. We also use the vacuum free energy to calculate the (renormalized) magnetization of the QCD vacuum, which shows that it is paramagnetic. We find that the three-flavor light-quark condensates and (renormalized) magnetization are improvements on the two-flavor results. We also find that the average light quark condensate is in agreement with the lattice up to $eB=0.2 {rm GeV^{2}}$, and the (renormalized) magnetization is in agreement up to $eB=0.3 {rm GeV^{2}}$, while three-flavor $chi$PT, which gives a non-zero shift in the difference between the light quark condensates unlike two-flavor $chi$PT, underestimates the difference compared to lattice QCD.
We compute the magnetic susceptibility of the quark condensate and the polarization of quarks at zero temperature and in a uniform magnetic background. Our theoretical framework consists of two chiral models that allow to treat self-consistently the spontaneous breaking of chiral symmetry: the linear $sigma-$model coupled to quarks, dubbed quark-meson model, and the Nambu-Jona-Lasinio model. We also perform analytic estimates of the same quantities within the renormalized quark-meson model, both in the regimes of weak and strong fields. Our numerical results are in agreement with the recent literature; moreover, we confirm previous Lattice findings, related to the saturation of the polarization at large fields.
In this paper, we consider two-flavor QCD at zero temperature and finite isospin chemical potential ($mu_I$) using a model-independent analysis within chiral perturbation theory at next-to-leading order. We calculate the effective potential, the chir al condensate and the pion condensate in the pion-condensed phase at both zero and nonzero pionic source. We compare our finite pionic source results for the chiral condensate and the pion condensate with recent (2+1)-flavor lattice QCD results and find that they are in excellent agreement.
We present a calculation of the $eta$-$eta$ mixing in the framework of large-$N_c$ chiral perturbation theory. A general expression for the $eta$-$eta$ mixing at next-to-next-to-leading order (NNLO) is derived, including higher-derivative terms up to fourth order in the four momentum, kinetic and mass terms. In addition, the axial-vector decay constants of the $eta$-$eta$ system are determined at NNLO. The numerical analysis of the results is performed successively at LO, NLO, and NNLO. We investigate the influence of one-loop corrections, OZI-rule-violating parameters, and $mathcal{O}(N_c p^6)$ contact terms.
We evaluate the second and fourth order quark number susceptibilities in hot QCD using two variations of resummed perturbation theory. On one hand, we carry out a one-loop calculation within hard-thermal-loop perturbation theory, and on the other han d perform a resummation of the four-loop finite density equation of state derived using a dimensionally reduced effective theory. Our results are subsequently compared with recent high precision lattice data, and their agreement thoroughly analyzed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا