ﻻ يوجد ملخص باللغة العربية
Relaxation dynamics of embedded metal nanoparticles after ultrafast laser pulse excitation is driven by thermal phenomena of different origins the accurate description of which is crucial for interpreting experimental results: hot electron gas generation, electron-phonon coupling, heat transfer to the particle environment and heat propagation in the latter. Regardingthis last mechanism, it is well known that heat transport in nanoscale structures and/or at ultrashort timescales may deviate from the predictions of the Fourier law. In these cases heat transport may rather be described by the Boltzmann transport equation. We present a numerical model allowing us to determine the electron and lattice temperature dynamics in a spherical gold nanoparticle core under subpicosecond pulsed excitation, as well as that of the surrounding shell dielectric medium. For this, we have used the electron-phonon coupling equation in the particle with a source term linked with the laser pulse absorption, and the ballistic-diffusive equations for heat conduction in the host medium. Either thermalizing or adiabatic boundary conditions have been considered at the shell external surface. Our results show that the heat transfer rate from the particle to the matrix can be significantly smaller than the prediction of Fouriers law. Consequently, the particle temperature rise is larger and its cooling dynamics might be slower than that obtained by using Fouriers law. This difference is attributed to the nonlocal and nonequilibrium heat conduction in the vicinity of the core nanoparticle. These results are expected to be of great importance for analyzing pump-probe experiments performed on single nanoparticles or nanocomposite media.
We present an atomistic model of a single nanoparticle with core/shell structure that takes into account its lattice strucutre and spherical geometry, and in which the values of microscopic parameters such as anisotropy and exchange constants can be
Laser-induced manipulation of magnetism at the nanoscale is a rapidly growing research topic with potential for applications in spintronics. In this work, we address the role of the scattering cross section, thermal effects, and laser fluence on the
We model shell formation of core-shell noble metal nanoparticles. A recently developed kinetic Monte Carlo approach is utilized to reproduce growth morphologies realized in recent experiments on core-shell nanoparticle synthesis, which reported smoot
The equilibrium optical phonons of graphene are well characterized in terms of anharmonicity and electron-phonon interactions, however their non-equilibrium properties in the presence of hot charge carriers are still not fully explored. Here we study
Some of the main experimental observations related to the occurrence of exchange bias in magnetic systems are reviewed, focusing the attention on the peculiar phenomenology associated to nanoparticles with core/shell structure as compared to thin fil