ﻻ يوجد ملخص باللغة العربية
Some of the main experimental observations related to the occurrence of exchange bias in magnetic systems are reviewed, focusing the attention on the peculiar phenomenology associated to nanoparticles with core/shell structure as compared to thin film bilayers. The main open questions posed by the experimental observations are presented and contrasted to existing theories and models for exchange bias formulated up to date. We also present results of simulations based on a simple model of a core/shell nanoparticle in which the values of microscopic parameters such as anisotropy and exchange constants can be tuned in the core, shell and at the interfacial regions, offering new insight on the microscopic origin of the experimental phenomenology. A detailed study of the of the magnetic order of the interfacial spins shows compelling evidence that most of the experimentally observed effects can be qualitatively accounted within the context of this model and allows also to quantify the magnitude of the loop shifts with striking agreement with the macroscopic observed values.
We present an atomistic model of a single nanoparticle with core/shell structure that takes into account its lattice strucutre and spherical geometry, and in which the values of microscopic parameters such as anisotropy and exchange constants can be
We present a numerical simulation study of the exchange bias (EB) effect in nanoparticles with core/shell structure aimed to unveil the microscopic origin of some of the experimental phenomenology associated to this effect. In particular, we have foc
We present Monte Carlo simulations of hysteresis loops of a model of a magnetic nanoparticle with a ferromagnetic core and an antiferromegnetic shell with varying values of the core/shell interface exchange coupling which aim to clarify the microscop
Coupling at the interface of core/shell magnetic nanoparticles is known to be responsible for the exchange bias (EB) and the relative sizes of core and shell components are supposed to influence the associated phenomenology. In this work, we have pre
A temperature dependent coherent magnetization reversal model is proposed for size-distributed assemblies of ferromagnetic nanoparticles and ferromagnetic-antiferromagnetic core-shell nanoparticles. The nanoparticles are assumed to be of uniaxial ani