ﻻ يوجد ملخص باللغة العربية
We measure hot and cold spots on the microwave background associated with supercluster and supervoid structures identified in the Sloan Digital Sky Survey Luminous Red Galaxy catalog. The structures give a compelling visual imprint, with a mean temperature deviation of 9.6 +/- 2.2 microK, i.e. above 4 sigma. We interpret this as a detection of the late-time Integrated Sachs-Wolfe (ISW) effect, in which cosmic acceleration from dark energy causes gravitational potentials to decay, heating or cooling photons passing through density crests or troughs. In a flat universe, the linear ISW effect is a direct signal of dark energy.
Cosmic structures leave an imprint on the microwave background radiation through the integrated Sachs-Wolfe effect. We construct a template map of the linear signal using the SDSS-III Baryon Acoustic Oscillation Survey at redshift 0.43 < z < 0.65. We
Small temperature anisotropies in the Cosmic Microwave Background can be sourced by density perturbations via the late-time integrated Sachs-Wolfe effect. Large voids and superclusters are excellent environments to make a localized measurement of thi
We show that linear redshift distortions in the galaxy distribution can affect the ISW galaxy-temperature signal, when the galaxy selection function is derived from a redshift survey. We find this effect adds power to the ISW signal at all redshifts
I present to this conference our latest measurements of the integrated Sachs-Wolfe (ISW) effect. After a brief review of the reasons for which this effect arises and of the technique to detect it by cross-correlating the cosmic microwave background (
Based on CMB maps from the 2013 Planck Mission data release, this paper presents the detection of the ISW effect, i.e., the correlation between the CMB and large-scale evolving gravitational potentials. The significance of detection ranges from 2 to