ﻻ يوجد ملخص باللغة العربية
Based on CMB maps from the 2013 Planck Mission data release, this paper presents the detection of the ISW effect, i.e., the correlation between the CMB and large-scale evolving gravitational potentials. The significance of detection ranges from 2 to 4 sigma, depending on which method is used. We investigate three separate approaches, which cover essentially all previous studies, as well as breaking new ground. (i) Correlation of the CMB with the Planck reconstructed gravitational lensing potential (for the first time). This detection is made using the lensing-induced bispectrum; the correlation between lensing and the ISW effect has a significance close to 2.5 sigma. (ii) Cross-correlation with tracers of LSS, yielding around 3 sigma significance, based on a combination of radio (NVSS) and optical (SDSS) data. (iii) Aperture photometry on stacked CMB fields at the locations of known large-scale structures, which yields a 4 sigma signal when using a previously explored catalogue, but shows strong discrepancies in amplitude and scale compared to expectations. More recent catalogues give more moderate results, ranging from negligible to 2.5 sigma at most, but with a more consistent scale and amplitude, the latter being still slightly above what is expected from numerical simulations within LCMD. Where they can be compared, these measurements are compatible with previous work using data from WMAP, which had already mapped these scales to the limits of cosmic variance. Plancks broader frequency coverage confirms that the signal is achromatic, bolstering the case for ISW detection. As a final step we use tracers of large-scale structure to filter the CMB data, presenting maps of the ISW temperature perturbation. These results provide complementary and independent evidence for the existence of a dark energy component that governs the current accelerated expansion of the Universe.
This paper presents a study of the ISW effect from the Planck 2015 temperature and polarization data release. The CMB is cross-correlated with different LSS tracers: the NVSS, SDSS and WISE catalogues, and the Planck 2015 lensing map. This cross-corr
We study the late-time Integrated Sachs-Wolfe (ISW) effect in $f(R)$ gravity using N-body simulations. In the $f(R)$ model under study, the linear growth rate is larger than that in general relativity (GR). This slows down the decay of the cosmic pot
We show that linear redshift distortions in the galaxy distribution can affect the ISW galaxy-temperature signal, when the galaxy selection function is derived from a redshift survey. We find this effect adds power to the ISW signal at all redshifts
Cosmic structures leave an imprint on the microwave background radiation through the integrated Sachs-Wolfe effect. We construct a template map of the linear signal using the SDSS-III Baryon Acoustic Oscillation Survey at redshift 0.43 < z < 0.65. We
The integrated Sachs-Wolfe (ISW) effect is caused by the decay of cosmological gravitational potential, and is therefore a unique probe of dark energy. However, its robust detection is still problematic. Various tensions between different data sets,