ﻻ يوجد ملخص باللغة العربية
We investigate potential quantum nonlinear corrections to Diracs equation through its sub-leading effect on neutrino oscillation probabilities. Working in the plane-wave approximation and in the $mu-tau$ sector, we explore various classes of nonlinearities, with or without an accompanying Lorentz violation. The parameters in our models are first delimited by current experimental data before they are used to estimate corrections to oscillation probabilities. We find that only a small subset of the considered nonlinearities have the potential to be relevant at higher energies and thus possibly detectable in future experiments. A falsifiable prediction of our models is an energy dependent effective mass-squared, generically involving fractional powers of the energy.
If neutrinos get mass via the seesaw mechanism the mixing matrix describing neutrino oscillations can be effectively non-unitary. We show that in this case the neutrino appearance probabilities involve a new CP phase, phi, associated to non-unitarity
Neutrino mixing and oscillations in quantum field theory framework had been studied before, which shew that the Fock space of flavor states is unitarily inequivalent to that of mass states (inequivalent vacua model). A paradox emerges when we use the
We propose an idea of the constrained Feynman amplitude for the scattering of the charged lepton and the virtual W-boson, $l_{beta} + W_{rho} rightarrow l_{alpha} + W_{lambda}$, from which the conventional Pontecorvo oscillation formula of relativist
The lightness of the Standard Model (SM) neutrinos could be understood if their masses were to be generated by new physics at a high scale, through the so-called seesaw mechanism involving heavy fermion singlets. If new physics violates baryon minus
In astrophysical scenarios with large neutrino density, like supernovae and the early universe, the presence of neutrino-neutrino interactions can give rise to collective flavor oscillations in the out-of-equilibrium collective dynamics of a neutrino