ترغب بنشر مسار تعليمي؟ اضغط هنا

Simulation of Collective Neutrino Oscillations on a Quantum Computer

110   0   0.0 ( 0 )
 نشر من قبل Benjamin Hall
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In astrophysical scenarios with large neutrino density, like supernovae and the early universe, the presence of neutrino-neutrino interactions can give rise to collective flavor oscillations in the out-of-equilibrium collective dynamics of a neutrino cloud. The role of quantum correlations in these phenomena is not yet well understood, in large part due to complications in solving for the real-time evolution of the strongly coupled many-body system. Future fault-tolerant quantum computers hold the promise to overcome much of these limitations and provide direct access to the correlated neutrino dynamic. In this work, we present the first simulation of a small system of interacting neutrinos using current generation quantum devices. We introduce a strategy to overcome limitations in the natural connectivity of the qubits and use it to track the evolution of entanglement in real-time. The results show the critical importance of error-mitigation techniques to extract meaningful results for entanglement measures using noisy, near term, quantum devices.



قيم البحث

اقرأ أيضاً

Recently, it has been demonstrated that neutrinos in a supernova oscillate collectively. This process occurs much deeper than the conventional matter-induced MSW effect and hence may have an impact on nucleosynthesis. In this paper we explore the eff ects of collective neutrino oscillations on the r-process, using representative late-time neutrino spectra and outflow models. We find that accurate modeling of the collective oscillations is essential for this analysis. As an illustration, the often-used single-angle approximation makes grossly inaccurate predictions for the yields in our setup. With the proper multiangle treatment, the effect of the oscillations is found to be less dramatic, but still significant. Since the oscillation patterns are sensitive to the details of the emitted fluxes and the sign of the neutrino mass hierarchy, so are the r-process yields. The magnitude of the effect also depends sensitively on the astrophysical conditions - in particular on the interplay between the time when nuclei begin to exist in significant numbers and the time when the collective oscillation begins. A more definitive understanding of the astrophysical conditions, and accurate modeling of the collective oscillations for those conditions, is necessary.
112 - Huaiyu Duan 2015
Neutrino oscillations in a hot and dense astrophysical environment such as a core-collapse supernova pose a challenging, seven-dimensional flavor transport problem. To make the problem even more difficult (and interesting), neutrinos can experience c ollective oscillations through nonlinear refraction in the dense neutrino medium in this environment. Significant progress has been made in the last decade towards the understanding of collective neutrino oscillations in various simplified neutrino gas models with imposed symmetries and reduced dimensions. However, a series of recent studies seem to have reset this progress by showing that these models may not be compatible with collective neutrino oscillations because the latter can break the symmetries spontaneously if they are not imposed. We review some of the key concepts of collective neutrino oscillations by using a few simple toy models. We also elucidate the breaking of spatial and directional symmetries in these models because of collective oscillations.
We investigate the importance of going beyond the mean-field approximation in the dynamics of collective neutrino oscillations. To expand our understanding of the coherent neutrino oscillation problem, we apply concepts from many-body physics and qua ntum information theory. Specifically, we use measures of nontrivial correlations (otherwise known as entanglement) between the constituent neutrinos of the many-body system, such as the entanglement entropy and the Bloch vector of the reduced density matrix. The relevance of going beyond the mean field is demonstrated by comparisons between the evolution of the neutrino state in the many-body picture vs the mean-field limit, for different initial conditions.
82 - Alessandro Roggero 2021
Collective neutrino oscillations can potentially play an important role in transporting lepton flavor in astrophysical scenarios where the neutrino density is large, typical examples are the early universe and supernova explosions. It has been argued in the past that simple models of the neutrino Hamiltonian designed to describe forward scattering can support substantial flavor evolution on very short time scales $tapproxlog(N)/(G_Frho_ u)$, with $N$ the number of neutrinos, $G_F$ the Fermi constant and $rho_ u$ the neutrino density. This finding is in tension with results for similar but exactly solvable models for which $tapproxsqrt{N}/(G_Frho_ u)$ instead. In this work we provide a coherent explanation of this tension in terms of Dynamical Phase Transitions (DPT) and study the possible impact that a DPT could have in more realistic models of neutrino oscillations and their mean-field approximation.
In our previous studies (see [1] and references therein) we developed a new theoretical framework that enabled one to consider a new mechanism of neutrino quantum decoherence engendered by the neutrino radiative decay. In parallel, another framework was developed (see [2] and references therein) for the description of the neutrino quantum decoherence due to the non-forward neutrino scattering processes. Both mechanisms are described by the master equations in the Lindblad form. We study the influence of the neutrino quantum decoherence on collective neutrino oscillations. In the present studies we are are not interested in a specific mechanism of neutrino quantum decoherence. Therefore, we use the general Lindblad master equation for the description of the neutrino quantum decoherence and do not fix an analytical expressions for the decoherence and relaxation parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا