ترغب بنشر مسار تعليمي؟ اضغط هنا

Turbulence and Magnetic Fields in the Large Scale Structure of the Universe

104   0   0.0 ( 0 )
 نشر من قبل Dongsu Ryu
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The nature and origin of turbulence and magnetic fields in the intergalactic space are important problems that are yet to be understood. We propose a scenario in which turbulent flow motions are induced via the cascade of the vorticity generated at cosmological shocks during the formation of the large scale structure. The turbulence in turn amplifies weak seed magnetic fields of any origin. Supercomputer simulations show that the turbulence is subsonic inside clusters/groups of galaxies, whereas it is transonic or mildly supersonic in filaments. Based on a turbulence dynamo model, we then estimate that the average magnetic field strength would be a few microgauss inside clusters/groups, approximately 0.1 microgauss around clusters/groups, and approximately 10 nanogauss in filaments. Our model presents a physical mechanism that transfers the gravitation energy to the turbulence and magnetic field energies in the large scale structure of the universe.



قيم البحث

اقرأ أيضاً

In paper I, we obtained an equation for the evolution of density inhomogeneities in a radiation dominated universe when they are affected by magnetic fields. In this second paper we apply this equation to the case in which the subjacent magnetic conf iguration is a flux tube. For scales of the order of 1 Mpc or less the differential equation is elliptical. To solve it, we have used the numerical method based on Simultaneous Over Relaxation, SOR, with Chebyshev acceleration and we have treated the problem as a boundary value problem, which restricts the prediction ability of the integration. For large-scale flux tubes, much larger than 1 Mpc, the equation can be analytically integrated and no assumption about the final shape or magnitude of the inhomogeneity is required. In both cases we obtain an evolution which does not differ very much from linear in time. The inhomogeneity in the density becomes filamentary. Large scale structures ($ge$ 10 Mpc) are probably unaffected by damping, non-linear and amplification mechanisms after Equality, so that this model provides a tool to interpret the present observed large scale structure. Filaments are very frequently found in the large-scale structure in the Universe. It is suggested here that they could arise from primordial magnetic flux tubes, thus providing an alternative hypothesis for its interpretation; in particular we consider the case of the Coma-A1367 supercluster, where the magnetic field is known to be high.
We consider that no mean magnetic field exists during this epoch, but that there is a mean magnetic energy associated with large-scale magnetic inhomogeneities. We study the evolution of these inhomogeneities and their influence on the large scale de nsity structure, by introducing linear perturbations in Maxwell equations, the conservation of momentum-energy equation, and in Einstein field equations. The primordial magnetic field structure is time independent in the linear approximation, only being diluted by the general expansion, so that $vec{B}R^2$ is conserved in comoving coordinates. Magnetic fields have a strong influence on the formation of large-scale structure. Firstly, relatively low fields are able to generate density structures even if they were inexistent at earlier times. Second, magnetic fields act anisotropically more recently, modifying the evolution of individual density clouds. Magnetic flux tubes have a tendency to concentrate photons in filamentary patterns.
297 - Jaan Einasto 2009
A short overview is given on the development of our present paradigm of the large scale structure of the Universe with emphasis on the role of Ya. B. Zeldovich. Next we use the Sloan Digital Sky Survey data and show that the distribution of phases of density waves of various scale in the present-day Universe are correlated. Using numerical simulations of structure evolution we show that the skeleton of the cosmic web was present already in an early stage of the evolution of structure. The positions of maxima and minima of density waves (their phases) are the more stable, the larger is the wavelength. The birth of the first generation of stars occured most probably in the central regions of rich proto-superclusters where the density was highest in the early Universe.
The rate of magnetic field diffusion plays an essential role in several astrophysical plasma processes. It has been demonstrated that the omnipresent turbulence in astrophysical media induces fast magnetic reconnection, which consequently leads to la rge-scale magnetic flux diffusion at a rate independent of the plasma microphysics. This process is called ``reconnection diffusion (RD) and allows for the diffusion of fields which are dynamically important. The current theory describing RD is based on incompressible magnetohydrodynamic (MHD) turbulence. In this work, we have tested quantitatively the predictions of the RD theory when magnetic forces are dominant in the turbulence dynamics (Alfv{e}nic Mach number $M_A < 1$). We employed the textsc{Pencil Code} to perform numerical simulations of forced MHD turbulence, extracting the values of the diffusion coefficient $eta_{RD}$ using the Test-Field method. Our results are consistent with the RD theory ($eta_{RD} sim M_A^{3}$ for $M_A < 1$) when turbulence approaches the incompressible limit (sonic Mach number $M_S lesssim 0.02$), while for larger $M_S$ the diffusion is faster ($eta_{RD} sim M_A^{2}$). This work shows for the first time simulations of compressible MHD turbulence with the suppression of the cascade in the direction parallel to the mean magnetic field, which is consistent with incompressible weak turbulence theory. We also verified that in our simulations the energy cascading time does not follow the scaling with $M_A$ predicted for the weak regime, in contradiction with the RD theory assumption. Our results generally support and expand the RD theory predictions.
We study the intermittency and field-line structure of the MHD turbulence in plasmas with very large magnetic Prandtl numbers. In this regime, which is realized in the interstellar medium, some accretion disks, protogalaxies, galaxy-cluster gas, earl y Universe, etc., magnetic fluctuations can be excited at scales below the viscous cutoff. The salient feature of the resulting small-scale magnetic turbulence is the folded structure of the fields. It is characterized by very rapid transverse spatial oscillation of the field direction, while the field lines remain largely unbent up to the scale of the flow. Quantitatively, the fluctuation level and the field-line geometry can be studied in terms of the statistics of the field strength and of the field-line curvature. In the kinematic limit, the distribution of the field strength is an expanding lognormal, while that of the field-line curvature K is stationary and has a power tail K^{-13/7}. The field strength and curvature are anticorrelated, i.e. the growing fields are mostly flat, while the sharply curved fields remain relatively weak. The field, therefore, settles into a reduced-tension state. Numerical simulations demonstrate three essential features of the nonlinear regime. First, the total magnetic energy is equal to the total kinetic energy. Second, the intermittency is partially suppressed compared to the kinematic case, as the fields become more volume-filling and their distribution develops an exponential tail. Third, the folding structure of the field is unchanged from the kinematic case: the anticorrelation between the field strength and the curvature persists and the distribution of the latter retains the same power tail. We propose a model of back reaction based on the folding picture that reproduces all of the above numerical results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا