ترغب بنشر مسار تعليمي؟ اضغط هنا

The small-scale structure of magnetohydrodynamic turbulence with large magnetic Prandtl numbers

99   0   0.0 ( 0 )
 نشر من قبل Alex Schekochihin
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the intermittency and field-line structure of the MHD turbulence in plasmas with very large magnetic Prandtl numbers. In this regime, which is realized in the interstellar medium, some accretion disks, protogalaxies, galaxy-cluster gas, early Universe, etc., magnetic fluctuations can be excited at scales below the viscous cutoff. The salient feature of the resulting small-scale magnetic turbulence is the folded structure of the fields. It is characterized by very rapid transverse spatial oscillation of the field direction, while the field lines remain largely unbent up to the scale of the flow. Quantitatively, the fluctuation level and the field-line geometry can be studied in terms of the statistics of the field strength and of the field-line curvature. In the kinematic limit, the distribution of the field strength is an expanding lognormal, while that of the field-line curvature K is stationary and has a power tail K^{-13/7}. The field strength and curvature are anticorrelated, i.e. the growing fields are mostly flat, while the sharply curved fields remain relatively weak. The field, therefore, settles into a reduced-tension state. Numerical simulations demonstrate three essential features of the nonlinear regime. First, the total magnetic energy is equal to the total kinetic energy. Second, the intermittency is partially suppressed compared to the kinematic case, as the fields become more volume-filling and their distribution develops an exponential tail. Third, the folding structure of the field is unchanged from the kinematic case: the anticorrelation between the field strength and the curvature persists and the distribution of the latter retains the same power tail. We propose a model of back reaction based on the folding picture that reproduces all of the above numerical results.



قيم البحث

اقرأ أيضاً

We report a series of numerical simulations showing that the critical magnetic Reynolds number Rm_c for the nonhelical small-scale dynamo depends on the Reynolds number Re. Namely, the dynamo is shut down if the magnetic Prandtl number Pr=Rm/Re is le ss than some critical value Pr_c<1 even for Rm for which dynamo exists at Pr>=1. We argue that, in the limit of Re->infinity, a finite Pr_c may exist. The second possibility is that Pr_c->0 as Re->infinity, while Rm_c tends to a very large constant value inaccessible at current resolutions. If there is a finite Pr_c, the dynamo is sustainable only if magnetic fields can exist at scales smaller than the flow scale, i.e., it is always effectively a large-Pr dynamo. If there is a finite Rm_c, our results provide a lower bound: Rm_c<220 for Pr<=1/8. This is larger than Rm in many planets and in all liquid-metal experiments.
In this study we discuss two key issues related to a small-scale dynamo instability at low magnetic Prandtl numbers and large magnetic Reynolds numbers, namely: (i) the scaling for the growth rate of small-scale dynamo instability in the vicinity of the dynamo threshold; (ii) the existence of the Golitsyn spectrum of magnetic fluctuations in small-scale dynamos. There are two different asymptotics for the small-scale dynamo growth rate: in the vicinity of the threshold of the excitation of the small-scale dynamo instability, $lambda propto ln({rm Rm}/ {rm Rm}^{rm cr})$, and when the magnetic Reynolds number is much larger than the threshold of the excitation of the small-scale dynamo instability, $lambda propto {rm Rm}^{1/2}$, where ${rm Rm}^{rm cr}$ is the small-scale dynamo instability threshold in the magnetic Reynolds number ${rm Rm}$. We demonstrated that the existence of the Golitsyn spectrum of magnetic fluctuations requires a finite correlation time of the random velocity field. On the other hand, the influence of the Golitsyn spectrum on the small-scale dynamo instability is minor. This is the reason why it is so difficult to observe this spectrum in direct numerical simulations for the small-scale dynamo with low magnetic Prandtl numbers.
324 - P.D. Mininni 2010
This article reviews recent studies of scale interactions in magnetohydrodynamic turbulence. The present day increase of computing power, which allows for the exploration of different configurations of turbulence in conducting flows, and the developm ent of shell-to-shell transfer functions, has led to detailed studies of interactions between the velocity and the magnetic field and between scales. In particular, processes such as induction and dynamo action, the damping of velocity fluctuations by the Lorentz force, or the development of anisotropies, can be characterized at different scales. In this context we consider three different configurations often studied in the literature: mechanically forced turbulence, freely decaying turbulence, and turbulence in the presence of a uniform magnetic field. Each configuration is of interest for different geophysical and astrophysical applications. Local and non-local transfers are discussed for each case. While the transfer between scales of solely kinetic or solely magnetic energy is local, transfers between kinetic and magnetic fields are observed to be local or non-local depending on the configuration. Scale interactions in the cascade of magnetic helicity are also reviewed. Based on the results, the validity of several usual assumptions in hydrodynamic turbulence, such as isotropy of the small scales or universality, is discussed.
The intermittent small-scale structure of turbulence governs energy dissipation in many astrophysical plasmas and is often believed to have universal properties for sufficiently large systems. In this work, we argue that small-scale turbulence in acc retion disks is universal in the sense that it is insensitive to the magnetorotational instability (MRI) and background shear, and therefore indistinguishable from standard homogeneous magnetohydrodynamic (MHD) turbulence at small scales. We investigate the intermittency of current density, vorticity, and energy dissipation in numerical simulations of incompressible MHD turbulence driven by the MRI in a shearing box. We find that the simulations exhibit a similar degree of intermittency as in standard MHD turbulence. We perform a statistical analysis of intermittent dissipative structures and find that energy dissipation is concentrated in thin sheet-like structures that span a wide range of scales up to the box size. We show that these structures exhibit strikingly similar statistical properties to those in standard MHD turbulence. Additionally, the structures are oriented in the toroidal direction with a characteristic tilt of approximately 17.5 degrees, implying an effective guide field in that direction.
Magnetic field are transported and tangled by turbulence, even as they lose identity due to nonideal or resistive effects. On balance field lines undergo stretch-twist-fold processes. The curvature field, a scalar that measures the tangling of the ma gnetic field lines, is studied in detail here, in the context of magnetohydrodynamic turbulence. A central finding is that the magnitudes of the curvature and the magnetic field are anti-correlated. High curvature co-locates with low magnetic field, which gives rise to power-law tails of the probability density function of the curvature field. The curvature drift term that converts magnetic energy into flow and thermal energy, largely depends on the curvature field behavior, a relationship that helps to explain particle acceleration due to curvature drift. This adds as well to evidence that turbulent effects most likely play an essential role in particle energization since turbulence drives stronger tangled field configurations, and therefore curvature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا