ﻻ يوجد ملخص باللغة العربية
The Aharonov-Bohm effect is the prime example of a zero-field-strength configuration where a non-trivial vector potential acquires physical significance, a typical quantum mechanical effect. We consider an extension of the traditional A-B problem, by studying a two-dimensional medium filled with many point-like vortices. Systems like this might be present within a Type II superconducting layer in the presence of a strong magnetic field perpendicular to the layer, and have been studied in different limits. We construct an explicit solution for the wave function of a scalar particle moving within one such layer when the vortices occupy the sites of a square lattice and have all the same strength, equal to half of the flux quantum. From this construction we infer some general characteristics of the spectrum, including the conclusion that such a flux array produces a repulsive barrier to an incident low-energy charged particle, so that the penetration probability decays exponentially with distance from the edge.
At 6th order in perturbation theory, the random magnetic impurity problem at second order in impurity density narrows down to the evaluation of a single Feynman diagram with maximal impurity line crossing. This diagram can be rewritten as a sum of or
We investigate the non-Abelian Aharonov-Bohm (AB) effect for time-dependent gauge fields. We prove that the non-Abelian AB phase shift related to time-dependent gauge fields, in which the electric and magnetic fields are written in the adjoint repres
The phase of the wave function of charged matter is sensitive to the value of the electric potential, even when the matter never enters any region with non-vanishing electromagnetic fields. Despite its fundamental character, this archetypal electric
We present magnetotransport measurements in HgTe quantum well with inverted band structure, which expected to be a two-dimensional topological insulator having the bulk gap with helical gapless states at the edge. The negative magnetoresistance is ob
We study a system of electrons moving on a noncommutative plane in the presence of an external magnetic field which is perpendicular to this plane. For generality we assume that the coordinates and the momenta are both noncommutative. We make a trans