ترغب بنشر مسار تعليمي؟ اضغط هنا

Testing the electric Aharonov-Bohm effect with superconductors

233   0   0.0 ( 0 )
 نشر من قبل Thomas Bachlechner
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The phase of the wave function of charged matter is sensitive to the value of the electric potential, even when the matter never enters any region with non-vanishing electromagnetic fields. Despite its fundamental character, this archetypal electric Aharonov-Bohm effect has evidently never been observed. We propose an experiment to detect the electric potential through its coupling to the superconducting order parameter. A potential difference between two superconductors will induce a relative phase shift that is observable via the DC Josephson effect even when no electromagnetic fields ever act on the superconductors, and even if the potential difference is later reduced to zero. This is a type of electromagnetic memory effect, and would directly demonstrate the physical significance of the electric potential.



قيم البحث

اقرأ أيضاً

282 - B. Harms , O. Micu 2006
We study a system of electrons moving on a noncommutative plane in the presence of an external magnetic field which is perpendicular to this plane. For generality we assume that the coordinates and the momenta are both noncommutative. We make a trans formation from the noncommutative coordinates to a set of commuting coordinates and then we write the Hamiltonian for this system. The energy spectrum and the expectation value of the current can then be calculated and the Hall conductivity can be extracted. We use the same method to calculate the phase shift for the Aharonov-Bohm effect. Precession measurements could allow strong upper limits to be imposed on the noncommutativity coordinate and momentum parameters $Theta$ and $Xi$.
137 - Eric Mefford , Kenta Suzuki 2020
We study the theory of Jackiw-Teitelboim gravity with generalized dilaton potential on Euclidean two-dimensional negatively curved backgrounds. The effect of the generalized dilaton potential is to induce a conical defect on the two-dimensional manif old. We show that this theory can be written as the ordinary quantum mechanics of a charged particle on a hyperbolic disk in the presence of a constant background magnetic field plus a pure gauge Aharonov-Bohm field. This picture allows us to exactly calculate the wavefunctions and propagators of the corresponding gravitational dynamics. With this method we are able to reproduce the gravitational density of states as well as compute the Reyni and entanglement entropies for the Hartle-Hawking state. While we reproduce the classical entropy at high temperature, we also find an extra topological contribution that becomes dominant at low temperatures. We then show how the presence of defects modify correlation functions, including the out-of-time-ordered correlation, and decrease the Lyapunov exponent. This is achieved two ways: by directly quantizing the boundary Schwarzian theory and by dimensionally reducing $SL(2,mathbb{Z})$ black holes.
We analyze the posibility of employing the mesoscopic-nanoscopic ring of a normal metal in a doubly degenerate persistent current state with a third auxihilary level and in the presence of the Aharonov-Bohm flux equal to the half of the normal flux q uantum $hbar c/e$ as a qubit. The auxiliary level can be effectively used for all fundamental quantum logic gate (qu-gate) operations which includes the initialization, phase rotation, bit flip and the Hadamard transformation as well as the double-qubit controlled operations (conditional bit flip). We suggest a tentative realization of the mechanism as either the mesoscopic structure of three quantum dots coherently coupled by mesoscopic tunnelling in crossed magnetic and electric fields, or as a nanoscopic structure of triple anionic vacancy (similar to $F_3$ centers in alkali halides) with one trapped electron in one spin projection state.
The Aharonov-Bohm effect is the prime example of a zero-field-strength configuration where a non-trivial vector potential acquires physical significance, a typical quantum mechanical effect. We consider an extension of the traditional A-B problem, by studying a two-dimensional medium filled with many point-like vortices. Systems like this might be present within a Type II superconducting layer in the presence of a strong magnetic field perpendicular to the layer, and have been studied in different limits. We construct an explicit solution for the wave function of a scalar particle moving within one such layer when the vortices occupy the sites of a square lattice and have all the same strength, equal to half of the flux quantum. From this construction we infer some general characteristics of the spectrum, including the conclusion that such a flux array produces a repulsive barrier to an incident low-energy charged particle, so that the penetration probability decays exponentially with distance from the edge.
Carbon nanoscrolls are material structures that have been shown to exhibit excellent performances in electric capacity and carrier mobility. They also represent a prime realization of radial superlattices whose geometric shape is expected to modulate the electronic and magnetic properties. Here, we show that these nanostructures display the Aharonov-Bohm effect even if they do not possess the closed cylindrical geometry of carbon nanotubes. Using a combination of density functional theory calculations and low-energy continuum models, we determine the electronic states in a simple two-winding carbon nanoscroll, and indeed show oscillations of the energy levels in the presence of an axial magnetic field. We prove that these oscillations, and hence the occurrence of the Aharonov-Bohm effect, are entirely due to electronic tunneling between the two windings of the spiral-shaped scroll. We also show that the open geometry of the scroll leads to the occurrence of one-dimensional conducting channels. Our study establishes the occurrence of the Aharonov-Bohm effect as a generic property of radial superlattices, including the recently synthesized high-order van der Waals superlattices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا