ترغب بنشر مسار تعليمي؟ اضغط هنا

Macroscopic graphene membranes and their extraordinary stiffness

148   0   0.0 ( 0 )
 نشر من قبل Tim Booth
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The properties of suspended graphene are currently attracting enormous interest, but the small size of available samples and the difficulties in making them severely restrict the number of experimental techniques that can be used to study the optical, mechanical, electronic, thermal and other characteristics of this one-atom-thick material. Here we describe a new and highly-reliable approach for making graphene membranes of a macroscopic size (currently up to 100 microns in diameter) and their characterization by transmission electron microscopy. In particular, we have found that long graphene beams supported by one side only do not scroll or fold, in striking contrast to the current perception of graphene as a supple thin fabric, but demonstrate sufficient stiffness to support extremely large loads, millions of times exceeding their own weight, in agreement with the presented theory. Our work opens many avenues for studying suspended graphene and using it in various micromechanical systems and electron microscopy.



قيم البحث

اقرأ أيضاً

Coupling high quality, suspended atomic membranes to specialized electrodes enables investigation of many novel phenomena, such as spin or Cooper pair transport in these two dimensional systems. However, many electrode materials are not stable in aci ds that are used to dissolve underlying substrates. Here we present a versatile and powerful multi-level lithographical technique to suspend atomic membranes, which can be applied to the vast majority of substrate, membrane and electrode materials. Using this technique, we fabricated suspended graphene devices with Al electrodes and mobility of 5500 cm^2/Vs. We also demonstrate, for the first time, fabrication and measurement of a free-standing thin Bi2Se3 membrane, which has low contact resistance to electrodes and a mobility of >~500 cm^2/Vs.
As mechanical structures enter the nanoscale regime, the influence of van der Waals forces increases. Graphene is attractive for nanomechanical systems because its Youngs modulus and strength are both intrinsically high, but the mechanical behavior o f graphene is also strongly influenced by the van der Waals force. For example, this force clamps graphene samples to substrates, and also holds together the individual graphene sheets in multilayer samples. Here we use a pressurized blister test to directly measure the adhesion energy of graphene sheets with a silicon oxide substrate. We find an adhesion energy of 0.45 pm 0.02 J/m2 for monolayer graphene and 0.31 pm 0.03 J/m2 for samples containing 2-5 graphene sheets. These values are larger than the adhesion energies measured in typical micromechanical structures and are comparable to solid/liquid adhesion energies. We attribute this to the extreme flexibility of graphene, which allows it to conform to the topography of even the smoothest substrates, thus making its interaction with the substrate more liquid-like than solid-like.
183 - Ning Wei , Xinsheng Peng , 2014
Water transport through graphene-derived membranes has gained much interest recently due to its promising potential in filtration and separation applications. In this work, we explore water permeation in graphene oxide membranes using atomistic simul ations, by considering flow through interlayer gallery, expanded pores such as wrinkles of interedge spaces, and pores within the sheet. We find that although flow enhancement can be established by nanoconfinement, fast water transport through pristine graphene channels is prohibited by a prominent side-pinning effect from capillaries formed between oxidized regions. We then discuss flow enhancement in situations according to several recent experiments. These understandings are finally integrated into a complete picture to understand water permeation through the layer-by-layer and porous microstructure and could guide rational design of functional membranes for energy and environmental applications.
We present a detailed transmission electron microscopy and electron diffraction study of the thinnest possible membrane, a single layer of carbon atoms suspended in vacuum and attached only at its edges. Membranes consisting of two graphene layers ar e also reported. We find that the membranes exhibit an apparently random spontaneous curvature that is strongest in single-layer membranes. A direct visualization of the roughness is presented for two-layer membranes where we used the variation of diffracted intensities with the local orientation of the membrane.
As graphene became one of the most important materials today, there is a renewed interest on others similar structures. One example is silicene, the silicon analogue of graphene. It share some the remarkable graphene properties, such as the Dirac con e, but presents some distinct ones, such as a pronounced structural buckling. We have investigated, through density functional based tight-binding (DFTB), as well as reactive molecular dynamics (using ReaxFF), the mechanical properties of suspended single-layer silicene. We calculated the elastic constants, analyzed the fracture patterns and edge reconstructions. We also addressed the stress distributions, unbuckling mechanisms and the fracture dependence on the temperature. We analysed the differences due to distinct edge morphologies, namely zigzag and armchair.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا