ترغب بنشر مسار تعليمي؟ اضغط هنا

Mechanical Properties and Fracture Dynamics of Silicene Membranes

594   0   0.0 ( 0 )
 نشر من قبل Eric Perim Martins
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

As graphene became one of the most important materials today, there is a renewed interest on others similar structures. One example is silicene, the silicon analogue of graphene. It share some the remarkable graphene properties, such as the Dirac cone, but presents some distinct ones, such as a pronounced structural buckling. We have investigated, through density functional based tight-binding (DFTB), as well as reactive molecular dynamics (using ReaxFF), the mechanical properties of suspended single-layer silicene. We calculated the elastic constants, analyzed the fracture patterns and edge reconstructions. We also addressed the stress distributions, unbuckling mechanisms and the fracture dependence on the temperature. We analysed the differences due to distinct edge morphologies, namely zigzag and armchair.



قيم البحث

اقرأ أيضاً

Hybrid spin-mechanical systems are a promising platform for future quantum technologies. Usually they require application of additional microwave fields to project integer spin to a readable state. We develop a theory of optically detected spin-mecha nical resonance associated with half-integer spin defects in silicon carbide (SiC) membranes. It occurs when a spin resonance frequency matches a resonance frequency of a mechanical mode, resulting in a shortening of the spin relaxation time through resonantly enhanced spin-phonon coupling. The effect can be detected as an abrupt reduction of the photoluminescence intensity under optical pumping without application of microwave fields. We propose all-optical protocols based on such spin-mechanical resonance to detect external magnetic fields and mass with ultra-high sensitivity. We also discuss room-temperature nonlinear effects under strong optical pumping, including spin-mediated cooling and heating of mechanical modes. Our approach suggests a new concept for quantum sensing using spin-optomechanics.
The increasing availability of a variety of two-dimensional materials has generated enormous growth in the field of nanoengineering and nanomechanics. Recent developments in thin film synthesis have enabled the fabrication of freestanding functional oxide membranes that can be readily incorporated in nanomechanical devices. While many oxides are extremely brittle in bulk, recent studies have shown that, in thin membrane form, they can be much more robust to fracture as compared to their bulk counterparts. Here, we investigate the ultimate tensile strength of SrTiO$_3$ membranes by probing freestanding SrTiO$_3$ drumheads using an atomic force microscope. We demonstrate that SrTiO$_3$ membranes can withstand an elastic deformation with an average strain of ~6% in the sub-20 nm thickness regime, which is more than an order of magnitude beyond the bulk limit. We also show that these membranes are highly resilient upon a high cycle fatigue test, surviving up to a billion cycles of force modulation at 85% of their fracture strain, demonstrating their high potential for use in nanomechanical applications.
335 - K. Smaali , S. Desbief , G. Foti 2014
We present a quantitative exploration, combining experiment and simulation, of the mechanical and electronic properties, as well as the modifications induced by an alkylthiolated coating, at the single NP level. We determine the response of the NPs t o external pressure in a controlled manner by using an atomic force microscope tip. We find a strong reduction of their Young modulus, as compared to bulk gold, and a significant influence of strain in the electronic properties of the alkylthiolated NPs. Electron transport measurements of tiny molecular junctions (NP/alkylthiol/CAFM tip) show that the effective tunnelling barrier through the adsorbed monolayer strongly decreases with increasing the applied load, which translates in a remarkable and unprecedented increase of the tunnel current. These observations are successfully explained using simulations based on finite element analysis (FEA) and first-principles calculations that permit to consider the coupling between the mechanical response of the system and the electric dipole variations at the interface.
Despite the recent progress on two-dimensional multilayer materials (2DMM) with weak interlayer interactions, the investigation on 2DMM with strong interlayer interactions is far from its sufficiency. Here we report on first-principles calculations t hat clarify the structural evolution and optoelectronic properties of such a 2DMM, multilayer silicene. With our newly developed global optimization algorithm, we discover the existence of rich dynamically stable multilayer silicene phases, the stability of which is closely related to the extent of sp3 hybridization that can be evaluated by the average bonds and effective bond angles. The stable Si(111) surface structures are obtained when the silicene thickness gets up to four, showing the critical thickness for the structural evolution. We also find that the multilayer silicene with pi-bonded surfaces present outstanding optoelectronic properties for the solar cells and optical fiber communications due to the incorporation of sp2-type bonds in the sp3-type bonds dominated system. This study is helpful to complete the picture of structure and related property evolution of 2DMM with strong interlayer interactions.
Recently, individual single-walled carbon nanotubes (SWNTs) functionalized with azo-benzene chromophores were shown to form a new class of hybrid nanomaterials for optoelectronics applications. Here we use a number of experimental techniques and theo ry to understand the binding, orientation, and nature of coupling between chromophores and the nanotubes, all of which are of relevance to future optimization of these hybrid materials. We find that the binding energy between chromophores and nanotubes depends strongly on the type of tether that is used to bind the chromophores to the nanotubes, with pyrene tethers resulting in more than 90% of the bound chromophores during processing. DFT calculations show that the binding energy of the chromophores to the nanotubes is maximized for chromophores parallel to the nanotube sidewall, even with the use of tethers; second harmonic generation shows that there is nonetheless a partial radial orientation of the chromophores on the nanotubes. We find weak electronic coupling between the chromophores and the SWNTs, consistent with non-covalent binding. The chromophore-nanotube coupling, while weak, is sufficient to quench the chromophore fluorescence. Stern-Volmer plots are non-linear, which supports a combination of static and dynamic quenching processes. The chromophore orientation is an important variable for chromophore-nanotube phototransistors, and our experiments suggest the possibility for further optimizing this orientational degree of freedom.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا