ﻻ يوجد ملخص باللغة العربية
We investigate the electrical current and flow (number of parallel paths) between two sets of n sources and n sinks in complex networks. We derive analytical formulas for the average current and flow as a function of n. We show that for small n, increasing n improves the total transport in the network, while for large n bottlenecks begin to form. For the case of flow, this leads to an optimal n* above which the transport is less efficient. For current, the typical decrease in the length of the connecting paths for large n compensates for the effect of the bottlenecks. We also derive an expression for the average flow as a function of n under the common limitation that transport takes place between specific pairs of sources and sinks.
In systems of multiple agents, identifying the cause of observed agent dynamics is challenging. Often, these agents operate in diverse, non-stationary environments, where models rely on hand-crafted environment-specific features to infer influential
Identifying the infection sources in a network, including the index cases that introduce a contagious disease into a population network, the servers that inject a computer virus into a computer network, or the individuals who started a rumor in a soc
We investigate the validity of the non-Hermitian Hamiltonian approach in describing quantum transport in disordered tight-binding networks connected to external environments, acting as sinks. Usually, non-Hermitian terms are added, on a phenomenologi
Extreme events are emergent phenomena in multi-particle transport processes on complex networks. In practice, such events could range from power blackouts to call drops in cellular networks to traffic congestion on roads. All the earlier studies of e
We prove that the Abelian sandpile model on a random binary and binomial tree, as introduced in cite{rrs}, is not critical for all branching probabilities $p<1$; by estimating the tail of the annealed survival time of a random walk on the binary tree