ﻻ يوجد ملخص باللغة العربية
In systems of multiple agents, identifying the cause of observed agent dynamics is challenging. Often, these agents operate in diverse, non-stationary environments, where models rely on hand-crafted environment-specific features to infer influential regions in the systems surroundings. To overcome the limitations of these inflexible models, we present GP-LAPLACE, a technique for locating sources and sinks from trajectories in time-varying fields. Using Gaussian processes, we jointly infer a spatio-temporal vector field, as well as canonical vector calculus operations on that field. Notably, we do this from only agent trajectories without requiring knowledge of the environment, and also obtain a metric for denoting the significance of inferred causal features in the environment by exploiting our probabilistic method. To evaluate our approach, we apply it to both synthetic and real-world GPS data, demonstrating the applicability of our technique in the presence of multiple agents, as well as its superiority over existing methods.
We investigate the electrical current and flow (number of parallel paths) between two sets of n sources and n sinks in complex networks. We derive analytical formulas for the average current and flow as a function of n. We show that for small n, incr
Traditionally, Hawkes processes are used to model time--continuous point processes with history dependence. Here we propose an extended model where the self--effects are of both excitatory and inhibitory type and follow a Gaussian Process. Whereas pr
This work presents and experimentally test the framework used by our context-aware, distributed team of small Unmanned Aerial Systems (SUAS) capable of operating in real-time, in an autonomous fashion, and under constrained communications. Our framew
We consider the principal-agent problem with heterogeneous agents. Previous works assume that the principal signs independent incentive contracts with every agent to make them invest more efforts on the tasks. However, in many circumstances, these co
When agents are swarmed to carry out a mission, there is often a sudden failure of some of the agents observed from the command base. It is generally difficult to distinguish whether the failure is caused by actuators (hypothesis, $h_a$) or sensors (