ترغب بنشر مسار تعليمي؟ اضغط هنا

Incommensurate superfluidity of bosons in a double-well optical lattice

240   0   0.0 ( 0 )
 نشر من قبل Vladimir Stojanovic M.
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study bosons in the first excited Bloch band of a double-well optical lattice, recently realized at NIST. By calculating the relevant parameters from a realistic nonseparable lattice potential, we find that in the most favorable cases the boson lifetime in the first excited band can be several orders of magnitude longer than the typical nearest-neighbor tunnelling timescales, in contrast to that of a simple single-well lattice. In addition, for sufficiently small lattice depths the excited band has minima at nonzero momenta incommensurate with the lattice period, which opens a possibility to realize an exotic superfluid state that spontaneously breaks the time-reversal, rotational, and translational symmetries. We discuss possible experimental signatures of this novel state.



قيم البحث

اقرأ أيضاً

We investigate the properties of strongly interacting heteronuclear boson-boson mixtures loaded in realistic optical lattices, with particular emphasis on the physics of interfaces. In particular, we numerically reproduce the recent experimental obse rvation that the addition of a small fraction of K induces a significant loss of coherence in Rb, providing a simple explanation. We then investigate the robustness against the inhomogeneity typical of realistic experimental realizations of the glassy quantum emulsions recently predicted to occur in strongly interacting boson-boson mixtures on ideal homogeneous lattices.
106 - J. K. Chin , D. E. Miller , Y. Liu 2006
The study of superfluid fermion pairs in a periodic potential has important ramifications for understanding superconductivity in crystalline materials. Using cold atomic gases, various condensed matter models can be studied in a highly controllable e nvironment. Weakly repulsive fermions in an optical lattice could undergo d-wave pairing at low temperatures, a possible mechanism for high temperature superconductivity in the cuprates. The lattice potential could also strongly increase the critical temperature for s-wave superfluidity. Recent experimental advances in the bulk include the observation of fermion pair condensates and high-temperature superfluidity. Experiments with fermions and bosonic bound pairs in optical lattices have been reported, but have not yet addressed superfluid behavior. Here we show that when a condensate of fermionic atom pairs was released from an optical lattice, distinct interference peaks appear, implying long range order, a property of a superfluid. Conceptually, this implies that strong s-wave pairing and superfluidity have now been established in a lattice potential, where the transport of atoms occurs by quantum mechanical tunneling and not by simple propagation. These observations were made for unitarity limited interactions on both sides of a Feshbach resonance. For larger lattice depths, the coherence was lost in a reversible manner, possibly due to a superfluid to insulator transition. Such strongly interacting fermions in an optical lattice can be used to study a new class of Hamiltonians with interband and atom-molecule couplings.
74 - C. Menotti , C. Trefzger , 2006
We investigate the physics of dipolar bosons in a two dimensional optical lattice. It is known that due to the long-range character of dipole-dipole interaction, the ground state phase diagram of a gas of dipolar bosons in an optical lattice presents novel quantum phases, like checkerboard and supersolid phases. In this paper, we consider the properties of the system beyond its ground state, finding that it is characterised by a multitude of almost degenerate metastable states, often competing with the ground state. This makes dipolar bosons in a lattice similar to a disordered system and opens possibilities of using them for quantum memories.
We describe the design and implementation of a 2D optical lattice of double wells suitable for isolating and manipulating an array of individual pairs of atoms in an optical lattice. Atoms in the square lattice can be placed in a double well with any of their four nearest neighbors. The properties of the double well (the barrier height and relative energy offset of the paired sites) can be dynamically controlled. The topology of the lattice is phase stable against phase noise imparted by vibrational noise on mirrors. We demonstrate the dynamic control of the lattice by showing the coherent splitting of atoms from single wells into double wells and observing the resulting double-slit atom diffraction pattern. This lattice can be used to test controlled neutral atom motion among lattice sites and should allow for testing controlled two-qubit gates.
We investigate a quasi-one dimensional system of trapped cold bosonic atoms in an optical lattice by using the density matrix renormalization group to study the Bose-Hubbard model at T=0 for experimentally realistic numbers of lattice sites. It is sh own that a properly rescaled one-particle density matrix characterizes superfluid versus insulating states just as in the homogeneous system. For typical parabolic traps we also confirm the widely used local density approach for describing correlations in the limit of weak interaction. Finally, we note that the superfluid to Mott-insulating transition is seen most directly in the half width of the interference peak.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا