ﻻ يوجد ملخص باللغة العربية
At certain quantum critical points in metals an entire Fermi surface may disappear. A crucial question is the nature of the electronic excitations at the critical point. Here we provide arguments showing that at such quantum critical points the Fermi surface remains sharply defined even though the Landau quasiparticle is absent. The presence of such a critical Fermi surface has a number of consequences for the universal phenomena near the quantum critical point which are discussed. In particular the structure of scaling of the universal critical singularities can be significantly modified from more familiar criticality. Scaling hypotheses appropriate to a critical fermi surface are proposed. Implications for experiments on heavy fermion critical points are discussed. Various phenomena in the normal state of the cuprates are also examined from this perspective. We suggest that a phase transition that involves a dramatic reconstruction of the Fermi surface might underlie a number of strange observations in the metallic states above the superconducting dome.
We construct examples of translationally invariant solvable models of strongly-correlated metals, composed of lattices of Sachdev-Ye-Kitaev dots with identical local interactions. These models display crossovers as a function of temperature into regi
Heavy electron metals on the verge of a quantum phase transition to magnetism show a number of unusual non-fermi liquid properties which are poorly understood. This article discusses in a general way various theoretical aspects of this phase transiti
We study the emergence of non-Fermi liquid on heterostructure interfaces where there exists an infinite number of critical boson modes in two spatial dimensions for the magnetic fluctuations. At the interface, the interfacial Dzyaloshinskii-Moriya in
Significant effort has been devoted to the study of non-Fermi liquid (NFL) metals: gapless conducting systems that lack a quasiparticle description. One class of NFL metals involves a finite density of fermions interacting with soft order parameter f
Using determinantal quantum Monte Carlo, we compute the properties of a lattice model with spin $frac 1 2$ itinerant electrons tuned through a quantum phase transition to an Ising nematic phase. The nematic fluctuations induce superconductivity with