ﻻ يوجد ملخص باللغة العربية
A comparison is made of various searching procedures, based upon different entanglement measures or entanglement indicators, for highly entangled multi-qubits states. In particular, our present results are compared with those recently reported by Brown et al. [J. Phys. A: Math. Gen. 38 (2005) 1119]. The statistical distribution of entanglement values for the aforementioned multi-qubit systems is also explored.
We investigate the decay of entanglement, due to decoherence, of multi-qubit systems that are initially prepared in highly (in some cases maximally) entangled states. We assume that during the decoherence processes each qubit of the system interacts
Entanglement swapping has played an important role in quantum information processing, and become one of the necessary core technologies in the future quantum network. In this paper, we study entanglement swapping for multi-particle pure states and ma
Euclidean volume ratios characterizing the typicality of entangled and separable states are investigated for two-qubit and qubit-qutrit quantum states. For this purpose a new numerical approach is developed. It is based on the Peres-Horodecki criteri
The familiar Greenberger-Horne-Zeilinger (GHZ) states can be rewritten by entangling the Bell states for two qubits with a state of the third qubit, which is dubbed entangled entanglement. We show that in this way we obtain all 8 independent GHZ stat
The states of three-qubit systems split into two inequivalent types of genuine tripartite entanglement, namely the Greenberger-Horne-Zeilinger (GHZ) type and the $W$ type. A state belonging to one of these classes can be stochastically transformed on