ﻻ يوجد ملخص باللغة العربية
We investigate the topological theory obtained by twisting the N=(2,2) supersymmetric nonlinear sigma model with target a bihermitian space with torsion. For the special case in which the two complex structures commute, we show that the action is a Q-exact term plus a quasi-topological term. The quasi-topological term is locally given by a closed two-form which corresponds to a flat gerbe-connection and generalises the usual topological term of the A-model. Exponentiating it gives a Wilson surface, which can be regarded as a generalization of a Wilson line. This makes the quantum theory globally well-defined.
We discuss two dimensional N-extended supersymmetry in Euclidean signature and its R-symmetry. For N=2, the R-symmetry is SO(2)times SO(1,1), so that only an A-twist is possible. To formulate a B-twist, or to construct Euclidean N=2 models with H-flu
A Symmetry Principle has been shown to augment unambiguously the Einstein Field Equations, promoting the whole closed-string massless NS-NS sector to stringy graviton fields. Here we consider its weak field approximation, take a non-relativistic limi
We examine topological terms of $(2+1)$d sigma models and their consequences in the light of classifications of invertible quantum field theories utilizing bordism groups. In particular, we study the possible topological terms for the $U(N)/U(1)^N$ f
We find a geometric description of interacting $betagamma$-systems as a null Kac-Moody quotient of a nonlinear sigma-model for systems with varying amounts of supersymmetry.
Supersymmetric non-linear sigma-models are described by a field dependent Kaehler metric determining the kinetic terms. In general it is not guaranteed that this metric is always invertible. Our aim is to investigate the symmetry structure of supersy