ﻻ يوجد ملخص باللغة العربية
Supersymmetric non-linear sigma-models are described by a field dependent Kaehler metric determining the kinetic terms. In general it is not guaranteed that this metric is always invertible. Our aim is to investigate the symmetry structure of supersymmetric models in four dimensional space-time in which metric singularities occur. For this purpose we study a simple anomaly-free extension of the supersymmetric CP^1 model from a classical point of view. We show that the metric singularities can be regularized by the addition of a soft supersymmetry-breaking mass parameter.
In four-dimensional N=1 Minkowski superspace, general nonlinear sigma models with four-dimensional target spaces may be realised in term of CCL (chiral and complex linear) dynamical variables which consist of a chiral scalar, a complex linear scalar
It is known that supersymmetric nonlinear sigma models for the compact Kahler manifolds G/H cannot be consistently coupled to supergravity, since the Kahler potentials are not invariant under the G transformation. We show that the supersymmetric nonl
We construct connected (0,2) sigma models starting from n copies of (2,2) CP(N-1) models. General aspects of models of this type (known as T+O deformations) had been previously studied in the context of heterotic string theories. Our construction pre
There exist two superspace approaches to describe N=2 supersymmetric nonlinear sigma models in four-dimensional anti-de Sitter (AdS_4) space: (i) in terms of N=1 AdS chiral superfields, as developed in arXiv:1105.3111 and arXiv:1108.5290; and (ii) in
We derive and discuss, at both the classical and the quantum levels, generalized N = 2 supersymmetric quantum mechanical sigma models describing the motion over an arbitrary real or an arbitrary complex manifold with extra torsions. We analyze the re