ترغب بنشر مسار تعليمي؟ اضغط هنا

Three-nucleon interactions: dynamics

321   0   0.0 ( 0 )
 نشر من قبل Manoel Robilotta
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English
 تأليف M. R. Robilotta




اسأل ChatGPT حول البحث

A discussion is presented of the dynamics underlying three-body nuclear forces, with emphasis on changes which occurred over several decades.



قيم البحث

اقرأ أيضاً

195 - P. Maris , J. P. Vary , A. Calci 2014
We investigate selected static and transition properties of $^{12}$C using ab initio No-Core Shell Model (NCSM) methods with chiral two- and three-nucleon interactions. We adopt the Similarity Renormalization Group (SRG) to assist convergence includi ng up to three-nucleon (3N) contributions. We examine the dependences of the $^{12}$C observables on the SRG evolution scale and on the model-space parameters. We obtain nearly converged low-lying excitation spectra. We compare results of the full NCSM with the Importance Truncated NCSM in large model spaces for benchmarking purposes. We highlight the effects of the chiral 3N interaction on several spectroscopic observables. The agreement of some observables with experiment is improved significantly by the inclusion of 3N interactions, e.g., the B(M1) from the first $J^pi T = 1^+ 1$ state to the ground state. However, in some cases the agreement deteriorates, e.g., for the excitation energy of the first $1^+ 0$ state, leaving room for improved next-generation chiral Hamiltonians.
We present a family of nucleon-nucleon (NN) plus three-nucleon (3N) interactions up to N3LO in the chiral expansion that provides an accurate ab initio description of ground-state energies and charge radii up to the medium-mass regime with quantified theory uncertainties. Starting from the NN interactions proposed by Entem, Machleidt and Nosyk, we construct 3N interactions with consistent chiral order, non-local regulator, and cutoff value and explore the dependence of nuclear observables over a range of mass numbers on the 3N low-energy constants. By fixing these constants using the 3-H and 16-O ground-state energies, we obtain interactions that robustly reproduce experimental energies and radii for large range from p-shell nuclei to the nickel isotopic chain and resolve many of the deficiencies of previous interactions. Based on the order-by-order convergence and the cutoff dependence of nuclear observables, we assess the uncertainties due the interaction, which yield a significant contribution to the total theory uncertainty.
We compute the binding energies, radii, and densities for selected medium-mass nuclei within coupled-cluster theory and employ the bare chiral nucleon-nucleon interaction at order N3LO. We find rather well-converged results in model spaces consisting of 15 oscillator shells, and the doubly magic nuclei 40Ca, 48Ca, and the exotic 48Ni are underbound by about 1 MeV per nucleon within the CCSD approximation. The binding-energy difference between the mirror nuclei 48Ca and 48Ni is close to theoretical mass table evaluations. Our computation of the one-body density matrices and the corresponding natural orbitals and occupation numbers provides a first step to a microscopic foundation of the nuclear shell model.
204 - L. Canton , T. Melde (2 2000
We discuss a working approximation scheme to a recently developed formulation of the coupled piNNN-NNN problem. The approximation scheme is based on the physical assumption that, at low energies, the 2N-subsystem dynamics in the elastic channel is co nveniently described by the usual 2N-potential approach, while the explicit pion dynamics describes small, correction-type effects. Using the standard separable-expansion method, we obtain a dynamical equation of the Alt-Grassberger-Sandhas (AGS) type. This is an important result, because the computational techniques used for solving the normal AGS equation can also be used to describe the pion dynamics in the 3N system once the matrix dimension is increased by one component. We have also shown that this approximation scheme treats the conventional 3N problem once the pion degrees of freedom are projected out. Then the 3N system is described with an extended AGS-type equation where the spin-off of the pion dynamics (beyond the 2N potential) is taken into account in additional contributions to the driving term. These new terms are shown to reproduce the diagrams leading to modern 3N-force models. We also recover two sets of irreducible diagrams that are commonly neglected in 3N-force discussions, and conclude that these sets should be further investigated, because a claimed cancellation is questionable.
We study ground- and excited-state properties of all sd-shell nuclei with neutron and proton numbers 8 <= N,Z <= 20, based on a set of low-resolution two- and three-nucleon interactions that predict realistic saturation properties of nuclear matter. We focus on estimating the theoretical uncertainties due to variation of the resolution scale, the low-energy couplings, as well as from the many-body method. The experimental two-neutron and two-proton separation energies are reasonably well reproduced, with an uncertainty range of about 5 MeV. The first excited 2+ energies also show overall agreement, with a more narrow uncertainty range of about 500 keV. In most cases, this range is dominated by the uncertainties in the Hamiltonian.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا