ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing Landau quantisation with the presence of insulator-quantum Hall transition in a GaAs two-dimensional electron system

135   0   0.0 ( 0 )
 نشر من قبل Chi-Te Liang
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magneto-transport measurements are performed on the two-dimensional electron system (2DES) in an AlGaAs/GaAs heterostructure. By increasing the magnetic field perpendicular to the 2DES, magnetoresistivity oscillations due to Landau quantisation can be identified just near the direct insulator-quantum Hall (I-QH) transition. However, different mobilities are obtained from the oscillations and transition point. Our study shows that the direct I-QH transition does not always correspond to the onset of strong localisation.



قيم البحث

اقرأ أيضاً

We have performed low-temperature transport measurements on a disordered two-dimensional electron system (2DES). Features of the strong localization leading to the quantum Hall effect are observed after the 2DES undergoes a direct insulator-quantum H all transition with increasing the perpendicular magnetic field. However, such a transition does not correspond to the onset of strong localization. The temperature dependences of the Hall resistivity and Hall conductivity reveal the importance of the electron-electron interaction effects to the observed transition in our study.
103 - J. Eom , H. Cho , W. Kang 2000
Experiments on a nearly spin degenerate two-dimensional electron system reveals unusual hysteretic and relaxational transport in the fractional quantum Hall effect regime. The transition between the spin-polarized (with fill fraction $ u = 1/3$) and spin-unpolarized ($ u = 2/5$) states is accompanied by a complicated series of hysteresis loops reminiscent of a classical ferromagnet. In correlation with the hysteresis, magnetoresistance can either grow or decay logarithmically in time with remarkable persistence and does not saturate. In contrast to the established models of relaxation, the relaxation rate exhibits an anomalous divergence as temperature is reduced. These results indicate the presence of novel two-dimensional ferromagnetism with a complicated magnetic domain dynamic.
Reports of metallic behavior in two-dimensional (2D) systems such as high mobility metal-oxide field effect transistors, insulating oxide interfaces, graphene, and MoS2 have challenged the well-known prediction of Abrahams, et al. that all 2D systems must be insulating. The existence of a metallic state for such a wide range of 2D systems thus reveals a wide gap in our understanding of 2D transport that has become more important as research in 2D systems expands. A key to understanding the 2D metallic state is the metal-insulator transition (MIT). In this report, we demonstrate the existence of a disorder induced MIT in functionalized graphene, a model 2D system. Magneto-transport measurements show that weak-localization overwhelmingly drives the transition, in contradiction to theoretical assumptions that enhanced electron-electron interactions dominate. These results provide the first detailed picture of the nature of the transition from the metallic to insulating states of a 2D system.
212 - R. Raimondi , P. Schwab 2009
We provide a theoretical framework for the electric field control of the electron spin in systems with diffusive electron motion. The approach is valid in the experimentally important case where both intrinsic and extrinsic spin-orbit interaction in a two-dimensional electron gas are present simultaneously. Surprisingly, even when the extrinsic mechanism is the dominant driving force for spin Hall currents, the amplitude of the spin Hall conductivity may be considerably tuned by varying the intrinsic spin-orbit coupling via a gate voltage. Furthermore we provide an explanation of the experimentally observed out-of-plane spin polarization in a (110) GaAs quantum well.
The temperature dependence of conductivity $sigma (T)$ of a two-dimensional electron system in silicon has been studied in parallel magnetic fields B. At B=0, the system displays a metal-insulator transition at a critical electron density $n_c(0)$, a nd $dsigma/dT >0$ in the metallic phase. At low fields ($Blesssim 2$ T), $n_c$ increases as $n_c(B) - n_c(0) propto B^{beta}$ ($betasim 1$), and the zero-temperature conductivity scales as $sigma (n_s,B,T=0)/sigma (n_s,0,0)=f(B^{beta}/delta_n)$ (where $delta_n=(n_s-n_c(0))/n_c(0)$, and $n_s$ is electron density) as expected for a quantum phase transition. The metallic phase persists in fields of up to 18 T, consistent with the saturation of $n_c$ at high fields.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا