ﻻ يوجد ملخص باللغة العربية
We provide a theoretical framework for the electric field control of the electron spin in systems with diffusive electron motion. The approach is valid in the experimentally important case where both intrinsic and extrinsic spin-orbit interaction in a two-dimensional electron gas are present simultaneously. Surprisingly, even when the extrinsic mechanism is the dominant driving force for spin Hall currents, the amplitude of the spin Hall conductivity may be considerably tuned by varying the intrinsic spin-orbit coupling via a gate voltage. Furthermore we provide an explanation of the experimentally observed out-of-plane spin polarization in a (110) GaAs quantum well.
We study the coupled dynamics of spin and charge currents in a two-dimensional electron gas in the transport diffusive regime. For systems with inversion symmetry there are established relations between the spin Hall effect, the anomalous Hall effect
Experiments on a nearly spin degenerate two-dimensional electron system reveals unusual hysteretic and relaxational transport in the fractional quantum Hall effect regime. The transition between the spin-polarized (with fill fraction $ u = 1/3$) and
We study the spin Hall effect of a two-dimensional electron gas in the presence of a magnetic field and both the Rashba and Dresselhaus spin-orbit interactions. We show that the value of the spin Hall conductivity, which is finite only if the Zeeman
We use microscopic linear response theory to derive a set of equations that provide a complete description of coupled spin and charge diffusive transport in a two-dimensional electron gas (2DEG) with the Rashba spin-orbit (SO) interaction. These equa
We study theoretically transverse photoconductivity induced by circularly polarized radiation, i.e. the photovoltaic Hall effect, and linearly polarized radiation causing intraband optical transitions in two-dimensional electron gas (2DEG). We develo