ﻻ يوجد ملخص باللغة العربية
Recently, observational searches for gravitational wave background (GWB) have been developed and given constraints on the energy density of GWB in a broad range of frequencies. These constraints have already resulted in the rejection of some theoretical models of relatively large GWB spectra. However, at 100 MHz, there is no strict upper limit from direct observation, though an indirect limit exists due to He4 abundance due to big-bang nucleosynthesis. In our previous paper, we investigated the detector designs that can effectively respond to GW at high frequencies, where the wavelength of GW is comparable to the size of a detector, and found that the configuration, a so-called synchronous-recycling interferometer is best at these sensitivity. In this paper, we investigated the optimal location of two synchronous-recycling interferometers and derived their cross-correlation sensitivity to GWB. We found that the sensitivity is nearly optimized and hardly changed if two coaligned detectors are located within a range 0.2 m, and that the sensitivity achievable in an experiment is far below compared with the constraint previously obtained in experiments.
Recently, observational searches for gravitational wave background (GWB) have developed and given direct and indirect constraints on the energy density of GWB in a broad range of frequencies. These constraints have already rejected some theoretical m
Gravitational waves are perturbations of the metric of space-time. Six polarizations are possible, although general relativity predicts that only two such polarizations, tensor plus and tensor cross are present for gravitational waves. We give the an
This letter reports the results of a search for a stochastic background of gravitational waves (GW) at 100 MHz by laser interferometry. We have developed a GW detector, which is a pair of 75-cm baseline synchronous recycling (resonant recycling) inte
We present an approach to experimentally evaluate gravity gradient noise, a potentially limiting noise source in advanced interferometric gravitational wave (GW) detectors. In addition, the method can be used to provide sub-percent calibration in pha
Thermal noise is expected to be the dominant source of noise in the most sensitive frequency band of second generation ground based gravitational wave detectors. Reshaping the beam to a flatter wider profile which probes more of the mirror surface re